56 resultados para fat-free mass index
Resumo:
Bioelectrical impedance analysis (BIA) was used to assess body composition in rats fed on either standard laboratory diet or on a high-fat diet designed to induce obesity. Bioelectrical impedance analysis predictions of total body water and thus fat-free mass (FFM) for the group mean values were generally within 5% of the measured values by tritiated water ((H2O)-H-3) dilution. The limits of agreement for the procedure were, however, large, approximately +/-25%, limiting the applicability of the technique for measurement of body composition in individual animals.
Resumo:
We have compared the use of bioelectrical impedance analysis (BIA) with anthropometry for the prediction of changes in total body potassium (TBK) in a group (n = 31) of children with cystic fibrosis. Linear regression analysis showed that TBK was highly correlated (r > 0.93) with height(2)/impedance, weight, height, and fat-free mass (FFM) estimated from skin-fold measurements. Changes in TBK were also correlated, but less well, with changes in height(2)/impedance, weight, height, and FFM (r = 0.69, 0.59, 0.44, and 0.40, respectively). The children were divided into two groups: those who had normal accretion of TBK (> 5%/y) and those who had suboptimal accretion of TBK (< 5%/y). Analysis of variance showed that the significant difference in the change in TBK between the groups was detectable by concomitant changes in impedance and weight but not by changes in height, FFM, or weight and height Z scores. The results of this study suggest that serial BIA measures may be useful as a predictor of progressive undernutrition and poor growth in children with cystic fibrosis. (C) Elsevier Science Inc. 1997.
Resumo:
Conventional whole-body single frequency bioelectrical impedance analysis (BIA) of body composition typically uses height as a surrogate measure of conductor length. A new method of BIA analysis for the prediction of body cell mass (BCM) and extracellular water (ECW, as % body weight) not using height has been introduced-the Soft Tissue Analyser (STA(TM), Akern Sri, Florence, Italy)-making it ideal for use in subjects where measurement of height is difficult or impossible. The performance of the new analytical method in predicting BCM and ECW in 139 normal control subjects was assessed by comparison with reference data obtained from a four-component (4-C) model of body composition and with predictions obtained from conventional BIA analysis. Both predicted BCM and ECW were strongly (r = 0.82, SEE = 6.3 kg and 0.89, SEE = 1.3 kg respectively) correlated with the corresponding 4-C model measurements although differing significantly from the lines of identity (P < 0.0001). Fat-free mass, calculated from STA estimates of BCM and ECW, was better predicted (r = 0.91, SEE = 5.6 kg). The significant differences in STA-group mean values for BCM and ECW and wide limits of agreement compared with the reference data indicate that the method cannot be used with confidence for prediction of these body compartments despite the obvious advantage of not requiring an accurate measurement of height. (C) 2001 Harcourt Publishers Ltd.
Resumo:
This study investigated the change in body composition in 36 cancer outpatients receiving radiotherapy to the head and neck area (mean age: 63 ± 15 years) randomised to receive either nutrition intervention (NI; n=15) or usual care (UC; n=21). Body weight and composition were measured at the commencement of radiotherapy and 3 months later. The UC group lost significantly more weight; mean decrease = 4.3 kg, than the NI group: mean decrease = 1.1 kg (t(30)=-2.5, p=0.019). Fat-free mass loss was significantly higher in the UC group with a mean loss of 2.2 kg versus 0.3 kg in the NI group (t(30)=- 2.3, p=0.029). Body composition as measured by foot-to-foot bioelectrical impedance analysis provides more information than weight alone and can allow for tailoring of NI.
Resumo:
The purpose of this investigation was to assess changes in total energy expenditure (TEE), body weight (BW) and body composition following a peripheral blood stem cell transplant and following participation in a 3-month duration, moderate-intensity, mixed-type exercise programme. The doubly labelled and singly labelled water methods were used to measure TEE and total body water (TBW). Body weight and TBW were then used to calculate percentage body fat (%BF), and fat and fat-free mass (FFM). TEE and body composition measures were assessed pretransplant (PI), immediately post-transplant (PII) and 3 months post-PII (PIII). Following PII, 12 patients were divided equally into a control group (CG) or exercise intervention group (EG). While there was no change in TEE between pre- and post-transplant, BW (P
Resumo:
Background: A knowledge of energy expenditure in infancy is required for the estimation of recommended daily amounts of food energy, for designing artificial infant feeds, and as a reference standard for studies of energy metabolism in disease states. Objectives: The objectives of this study were to construct centile reference charts for total energy expenditure (TEE) in infants across the first year of life. Methods: Repeated measures of TEE using the doubly labeled water technique were made in 162 infants at 1.5, 3, 6, 9 and 12 months. In total, 322 TEE measurements were obtained. The LMS method with maximum penalized likelihood was used to construct the centile reference charts. Centiles were constructed for TEE expressed as MJ/day and also expressed relative to body weight (BW) and fat-free mass (FFM). Results: TEE increased with age and was 1.40,1.86, 2.64, 3.07 and 3.65 MJ/day at 1.5, 3, 6, 9 and 12 months, respectively. The standard deviations were 0.43, 0.47, 0.52, 0.66 and 0.88, respectively. TEE in MJ/kg increased from 0.29 to 0.36 and in MJ/day/kg FFM from 0.36 to 0.48. Conclusions: We have presented centile reference charts for TEE expressed as MJ/day and expressed relative to BW and FFM in infants across the first year of life. There was a wide variation or biological scatter in TEE values seen at all ages. We suggest that these centile charts may be used to assess and possibly quantify abnormal energy metabolism in disease states in infants.
Resumo:
Objective: The objective of this study was to investigate changes in body weight, BMI, body composition, and fat distribution among freshman women during their 1st year of college. Research Methods and Procedures: Freshman women during the 2004 to 2005 academic year were recruited to participate. The initial baseline visit occurred within the first 6 weeks of the fall 2004 semester, with the follow-up visit occurring during the last 6 weeks of the spring 2005 semester. At each visit, height, weight, BMI, waist and hip circumferences, and body composition (by DXA) were obtained. Results: One hundred thirty-seven participants completed both the fall and spring visits. Significant (p < 0.0001) increases between the fall and spring visits were observed for body weight (58.6 vs. 59.6 kg), BMI (21.9 vs. 22.3), percentage body fat (28.9 vs. 29.7), total fat mass (16.9 vs. 17.7 kg), fat-free mass (38.1 vs. 38.4 kg), waist circumference (69.4 vs. 70.3 cm), and hip circumference (97.4 vs. 98.6 cm), with no significant difference observed in the waist-to-hip ratio (0.71 vs. 0.71; p = 0.78). Discussion: Although statistically significant, changes in body weight, body composition, and fat mass were modest for women during their freshman year of college. These results do not support the purported freshman 15 weight gain publicized in the popular media.
Resumo:
AIM: To establish a simple method to quantify muscle/fat constituents in cervical muscles of asymptomatic women using magnetic resonance imaging (MRI), and to determine whether there is an age effect within a defined age range. MATERIALS AND METHODS: MRI of the upper cervical spine was performed for 42 asymptomatic women aged 18-45 years. The muscle and fat signal intensities on axial spin echo T1-weighted images were quantitatively classified by taking a ratio of the pixel intensity profiles of muscle against those of intermuscular fat for the rectus capitis posterior major and minor and inferior obliquus capitis muscles bilaterally. Inter- and intra-examiner agreement was scrutinized. RESULTS: The average relative values of fat within the upper cervical musculature compared with intermuscular fat indicated that there were only slight variations in indices between the three sets of muscles. There was no significant correlation between age and fat indices. There were significant differences for the relative fat within the muscle compared with intermuscular fat and body mass index for the right rectus capitis posterior major and right and left inferior obliquus capitis muscles (p = 0.032). Intraclass correlation coefficients for intraobserver agreement ranged from 0.94 to 0.98. Inter-rater agreement of the measurements ranged from 0.75 to 0.97. CONCLUSION: A quantitative measure of muscle/fat constituents has been developed, and results of this study indicate that relative fatty infiltration is not a feature of age in the upper cervical extensor muscles of women aged 18-45 years. (C) 2005 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Resumo:
GH-binding protein (GHBP) corresponds to the extracellular domain of the GH receptor (GHR) and has been shown to be closely related to body fat. This study aimed to examine the inter-relationship between GHBP, leptin and body fat, and to test the hypothesis that GHBP is modified by GH replacement in GH-deficient adults and predicts IGF-I response. Twenty adults, mean age 47 years (range 20-69) with proven GH deficiency were randomly allocated to either GH (up to 0.25 U/kg/week in daily doses) or placebo for 3 months before cross-over to the opposite treatment. Plasma GHBP and leptin were measured at baseline and 2, 4, 8 and 12 weeks after each treatment. Whole body composition was measured at baseline by dual-energy X-ray absorptiometry (DEXA). There was a strong correlation between baseline leptin and GHBP (r = 0.88, P < 0.0001) and between baseline GHBP and percentage body fat, (r = 0.83, P < 0.0001). Mean GHBP levels were higher on GH compared with placebo, 1.53 +/- 0.28 vs 1.41 +/- 0.25 nM, P = 0.049. There was no correlation between baseline IGF-I and GHBP (r = -0.049, P = 0.84), and GHBP did not predict IGF-I response to GH replacement. The close inter-relationship between GHBP, leptin and body fat suggests a possible role for GHBP in the regulation of body composition. GHBP is increased by GH replacement in GH-deficient adults, but does not predict biochemical response to GH replacement. (C) 1999 Churchill Livingstone.
Resumo:
Background Previous studies have examined individual dietary and lifestyle factors in relation to type 2 diabetes, but the combined effects of these factors are largely unknown. Methods We followed 84,941 female nurses from 1980 to 1996; these women were free of diagnosed cardiovascular disease, diabetes, and cancer at base line. Information about their diet and lifestyle was updated periodically. A low-risk group was defined according to a combination of five variables: a body-mass index (the weight in kilograms divided by the square of the height in meters) of less than 25; a diet high in cereal fiber and polyunsaturated fat and low in trans fat and glycemic load (which reflects the effect of diet on the blood glucose level); engagement in moderate-to-vigorous physical activity for at least half an hour per day; no current smoking; and the consumption of an average of at least half a drink of an alcoholic beverage per day. Results During 16 years of follow-up, we documented 3300 new cases of type 2 diabetes. Overweight or obesity was the single most important predictor of diabetes. Lack of exercise, a poor diet, current smoking, and abstinence from alcohol use were all associated with a significantly increased risk of diabetes, even after adjustment for the body-mass index. As compared with the rest of the cohort, women in the low-risk group (3.4 percent of the women) had a relative risk of diabetes of 0.09 (95 percent confidence interval, 0.05 to 0.17). A total of 91 percent of the cases of diabetes in this cohort (95 percent confidence interval, 83 to 95 percent) could be attributed to habits and forms of behavior that did not conform to the low-risk pattern. Conclusions Our findings support the hypothesis that the majority of cases of type 2 diabetes could be prevented by the adoption of a healthier lifestyle.
Resumo:
Objectives: To assess the accuracy of reporting from both a diet history and food record and identify some of the characteristics of more accurate reporters in a group of healthy adult volunteers for an energy balance study. Design: Prospective measurements in free-living people. Setting: Wollongong, Australia. Subjects: Fifteen healthy volunteers (seven male, eight female; aged 22 -59 y; body mass index (BMI) 19 - 33 kg/m(2)) from the local community in the city of Wollongong, Australia. Interventions: Measurement of energy intake via diet history interview and 7 day food records, total energy expenditure by the doubly labelled water technique over 14 days, physical activity by questionnaire, and body fat by dual-energy X-ray absorptiometry. Results: Increased misreporting of energy intake was associated with increased energy expenditure (r = 0.90, P < 0.0001, diet history; r(s)=0.79, P=0.0005, food records) but was not associated with age, sex, BMI or body fat. Range in number of recorded dinner foods correlated positively with energy expenditure (r(s)=0.63, P=0.01) and degree of misreporting (r(s)=0.71, P=0.003, diet history; r(s)=0.63, P=0.01, food records). Variation in energy intake at dinner and over the whole day identified by the food records correlated positively with energy expenditure (r=0.58, P = 0.02) and misreporting on the diet history (r=0.62, P=0.01). Conclusions: Subjects who are highly active or who have variable dietary and exercise behaviour may be less accurate in reporting dietary intake. Our findings indicate that it may be necessary to screen for these characteristics in studies where accuracy of reporting at an individual level is critical. Sponsorship: The study was supported in part by Australian Research Council funds made available through the University of Wollongong.
Resumo:
Background: Concerns of a decrease in physical activity levels (PALs) of children and a concurrent increase in childhood obesity exist worldwide. The exact relation between these two parameters however has as yet to be fully defined in children. Objective: This study examined the relation in 47 children, aged 5–10.5 y (mean age 8.4plusminus0.9 y) between habitual physical activity, minutes spent in moderate, vigorous and hard intensity activity and body composition parameters. Design: Total energy expenditure (TEE) was calculated using the doubly labelled water technique and basal metabolic rate (BMR) was predicted from Schofield's equations. PAL was determined by PAL=TEE/BMR. Time spent in moderate, vigorous and hard intensity activity was determined by accelerometry, using the Tritrac-R3D. Body fatness and body mass index (BMI) were used as the two measures of body composition. Results: Body fat and BMI were significantly inversely correlated with PAL (r=-0.43, P=0.002 and r=-0.45, P=0.001). Times spent in vigorous activity and hard activity were significantly correlated to percentage body fat (r=-0.44, P=0.004 and r=-0.39, P=0.014), but not BMI. Children who were in the top tertiles for both vigorous activity and hard activity had significantly lower body fat percentages than those in the middle and lowest tertiles. Moderate intensity activity was not correlated with measures of body composition. Conclusions: As well as showing a significant relation between PAL and body composition, these data intimate that there may be a threshold of intensity of physical activity that is influential on body fatness. In light of world trends showing increasing childhood obesity, this study supports the need to further investigate the importance of physical activity for children.
Resumo:
OBJECTIVE: To use magnetic resonance imaging (MRI) to validate estimates of muscle and adipose tissue (AT) in lower limb sections obtained by dual-energy X-ray absorptiometry (DXA) modelling. DESIGN: MRI measurements were used as reference for validating limb muscle and AT estimates obtained by DXA models that assume fat-free soft tissue (FFST) comprised mainly muscle: model A accounted for bone hydration only; model B also applied constants for FFST in bone and skin and fat in muscle and AT; model C was as model B but allowing for variable fat in muscle and AT. SUBJECTS: Healthy men (n = 8) and women (n = 8), ages 41 - 62 y; mean (s.d.) body mass indices (BMIs) of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m2, respectively. MEASUREMENTS: MRI scans of the legs and whole body DXA scans were analysed for muscle and AT content of thigh (20 cm) and lower leg (10 cm) sections; 24 h creatinine excretion was measured. RESULTS: Model A overestimated thigh muscle volume (MRI mean, 2.3 l) substantially (bias 0.36 l), whereas model B underestimated it by only 2% (bias 0.045 l). Lower leg muscle (MRI mean, 0.6 l) was better predicted using model A (bias 0.04 l, 7% overestimate) than model B (bias 0.1 l, 17% underestimate). The 95% limits of agreement were high for these models (thigh,+/- 20%; lower leg,+/- 47%). Model C predictions were more discrepant than those of model B. There was generally less agreement between MRI and all DXA models for AT. Measurement variability was generally less for DXA measurements of FFST (coefficient of variation 0.7 - 1.8%) and fat (0.8 - 3.3%) than model B estimates of muscle (0.5-2.6%) and AT (3.3 - 6.8%), respectively. Despite strong relationships between them, muscle mass was overestimated by creatinine excretion with highly variable predictability. CONCLUSION: This study has shown the value of DXA models for assessment of muscle and AT in leg sections, but suggests the need to re-evaluate some of the assumptions upon which they are based.