64 resultados para enjoyment of exercise
Resumo:
Background. To explore the efficacy of cycle training in the treatment of intermittent claudication, the present study compared performance and physiologic effects of cycle training with more conventional treadmill walking training in a group of patients with claudication. Method: Forty-two individuals with peripheral arterial disease and intermittent claudication (24 men, 18 women) were stratified by gender and the presence or absence of type 2 diabetes mellitus and then randomized to a treadmill (n = 13), cycle (n = 15), or control group (n = 14). Treadmill and cycle groups trained three times a week for 6 weeks, whereas the control group did not train during this period. Maximal and pain-free exercise times were measured on graded treadmill and cycle tests before and after training. Results. Treadmill training significantly improved maximal and pain-free treadmill walking times but did not improve cycle performance. Cycle training significantly improved maximal cycle time but did not improve treadmill performance. However, there was evidence of a stronger cross-transfer effect between the training modes for patients who reported a common limiting symptom during cycling and walking at baseline. There was also considerable variation in the training response to cycling, and a subgroup of responsive patients in the cycle group improved their walking performance by more than the average response observed in the treadmill group. Conclusion: These findings suggest that cycle exercise is not effective in improving walking performance in all claudication patients but might be an effective alternative to walking in those who exhibit similar limiting symptoms during both types of exercise.
Resumo:
Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation, (alpha-lipoic acid and a-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were. assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also bad no effect (p > 0.05). GPX (125.9 2.8 vs. 121.5 3.0 U.gHb(-1), p < 0.05) and CAT (6.1 0.2 vs. 5.6 0.2 U.mgHb-1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 4.3 vs. 52.0 5.2 U.mgHb(-1), p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.
Resumo:
Interest in the relationship between inflammation and oxidative stress has increased dramatically in recent years, not only within the clinical setting but also in the fields of exercise biochemistry and immunology. Inflammation and oxidative stress share a common role in the etiology of a variety Of Chronic diseases. During exercise, inflammation and oxidative stress are linked via muscle metabolism and muscle damage. Because oxidative stress and inflammation have traditionally been associated with fatigue and impaired recovery from exercise, research has focused on nutritional strategies aimed at reducing these effects. In this review, we have evaluated the findings of studies involving antioxidant supplementation on alterations in markers of inflammation (e.g., cytokines, C-reactive protein and cortisol). This review focuses predominantly on the role of reactive oxygen and nitrogen species generated from muscle metabolism and muscle damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, we have analyzed the influence of factors such as the dose, timing, supplementation period and bioavailability of antioxidant nutrients. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The prognostic value of exercise (EXE) and dobutamine echocardiograms (DbE) has been well defined in large studies. However, while risk is determined by both clinical and echo features, no simple means of combining these data has been defined. We sought to combine these data into risk scores. Methods. At 3 expert centers, 7650 pts underwent standard EXE (n=5211) and DbE (w2439) for evaluation of known or suspected CAD and were followed for up to 10 years (mean 5-2) for major events (death or myocardial infarction). A subgroup of 2953 EXE and 1025 DbE pts was randomly selected to develop separate multivariate models for prediction of events. After simplication of each model for clinical use, models were validated in the remaining EXE and DbE pts. ResuI1s. The total number of events was 200 in the EXE and 225 in the DbE pts, of which 58 and 99 events occurred in the respective testing groups. The following regression equations gave equivalent results I” the testing and validation groups for both EXE and DbE; DbE = (Age’O.02) + (DM’l .O) + (Low RPP’0.6) + ([CHF+lschemia+Scar]‘O.7) EXE = ([DM+CHF]‘O.S) + O.S(lschemla #) + l.B(Scar#) - (METS0.19) (where each categorical variable scored 1 when present and 0 when absent, Ischemia# = 1 for l-2 VD. 6 for 3 VD; Scar# = 1 for 1-2 VD, 1.7 for 3 VD). The table summarizes the scores and equivalent outcomes for EXE and DbE. Conclusions. Risk scores based on clinical and EXE or DbE results may be used to quantify the risk of events during follow-up.
Resumo:
Atherosclerotic plaque contains apoptotic endothelial cells with oxidative stress implicated in this process. Vitamin E and a-lipoic acid are a potent antioxidant combination with the potential to prevent endothelial apoptosis. Regular exercise is known to increase myocardial protection, however, little research has investigated the effects of exercise on the endothelium. The purpose of these studies was to investigate the effects of antioxidant supplementation and/or exercise training on proteins that regulate apoptosis in endothelial cells. Male rats received a control or antioxidant-supplemented diet (vitamin E and alpha-lipoic acid) and were assigned to sedentary or exercise-trained groups for 14 weeks. Left ventricular endothelial cells (LVECs) were isolated and levels of the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax were measured. Antioxidant supplementation caused a fourfold increase in Bcl-2 (P < 0.05) with no change in Bax (P > 0.05). Bcl-2:Bax was increased sixfold with antioxidant supplementation compared to non-supplemented animals (P < 0.05). Exercise training had no significant effect on Bcl-2, Bax or Bcl-2:Bax either alone or combined with antioxidant supplementation (P > 0.05) compared to non-supplemented animals. However, Bax was significantly lower (P < 0.05) in the supplemented trained group compared to non-supplemented trained animals. Cultured bovine endothelial cells incubated for 24 h with vitamin E and/or a-lipoic acid showed the combination of the two antioxidants increased Bcl-2 to a greater extent than cells incubated with the vehicle alone. In summary, vitamin E and a-lipoic acid increase endothelial cell Bcl-2, which may provide increased protection against apoptosis. (c) 2005 Elsevier Ltd. All rights reserved
Resumo:
Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.
Resumo:
Background. A sustainable pattern of participation in physical activity is important in the maintenance of health and prevention of disease, College students are in transition from an active youth to a more sedentary adult behavior pattern. Methods. We assessed self-reported physical activity and other characteristics in a sample of 2,729 male and female students (median age was 20 years) recruited from representative courses and year levels at four Australian College campuses. They were categorized as sufficiently or insufficiently active, using estimates of energy expenditure (kcal/week) derived from self-reported physical activity, Personal factors (self-efficacy, job status, enjoyment), social factors (social support from family/friends), and environmental factors (awareness of facilities, gym membership) were also assessed. Results. Forty-seven percent of females and 32% of males were insufficiently active. For females, the significant independent predictors of being insufficiently active were lower social support from family and friends, lower enjoyment of activity, and not working. For males, predictors were lower social support from family and friends, lower enjoyment of activity, and being older. Conclusions. Factors associated with physical activity participation (particularly social support from family and friends) can inform physical activity strategies directed at young adults in the college setting. (C) 1999 American Health Foundation and Academic Press.
Resumo:
Abnormal lower-limb biomechanics-in particular, abnormal pronation of the subtalar joint with concomitant increased internal rotation of the tibia-is one of the major causes of overuse injuries of the lower limb. A randomized, controlled, within-subjects research design (N = 14) was used to investigate the effect of a temporary felt orthosis and an antipronation taping technique to control the transverse tibial rotation position immediately after application and after each of two 10-minute periods of exercise. The results showed that the taping technique was superior to both the orthosis and no intervention in controlling tibial rotation position immediately after application and after 10 minutes of exercise. After 20 minutes of exercise, neither the tape nor the orthosis was significantly superior to the control; however, the trends suggested that some residual control was maintained. Future studies are needed to determine the amount of foot pronation control required to relieve symptoms in a symptomatic population in order to determine the clinical effectiveness of these treatment methods.
Resumo:
Background Previous studies have examined individual dietary and lifestyle factors in relation to type 2 diabetes, but the combined effects of these factors are largely unknown. Methods We followed 84,941 female nurses from 1980 to 1996; these women were free of diagnosed cardiovascular disease, diabetes, and cancer at base line. Information about their diet and lifestyle was updated periodically. A low-risk group was defined according to a combination of five variables: a body-mass index (the weight in kilograms divided by the square of the height in meters) of less than 25; a diet high in cereal fiber and polyunsaturated fat and low in trans fat and glycemic load (which reflects the effect of diet on the blood glucose level); engagement in moderate-to-vigorous physical activity for at least half an hour per day; no current smoking; and the consumption of an average of at least half a drink of an alcoholic beverage per day. Results During 16 years of follow-up, we documented 3300 new cases of type 2 diabetes. Overweight or obesity was the single most important predictor of diabetes. Lack of exercise, a poor diet, current smoking, and abstinence from alcohol use were all associated with a significantly increased risk of diabetes, even after adjustment for the body-mass index. As compared with the rest of the cohort, women in the low-risk group (3.4 percent of the women) had a relative risk of diabetes of 0.09 (95 percent confidence interval, 0.05 to 0.17). A total of 91 percent of the cases of diabetes in this cohort (95 percent confidence interval, 83 to 95 percent) could be attributed to habits and forms of behavior that did not conform to the low-risk pattern. Conclusions Our findings support the hypothesis that the majority of cases of type 2 diabetes could be prevented by the adoption of a healthier lifestyle.
Resumo:
Purpose: This study was designed to investigate the immediate effect of exercise intensity and duration on body fluid volumes in rats throughout a 3-wk exercise program. Methods: Changes in the extracellular water (ECW) and total body water (TBW) volumes of rats were measured preexercise and postexercise using multiple frequency bioelectrical impedance analysis. Groups of rats were exercised at two intensities (6 m.min(-1) and 12 m.min(-1)) for two exercise times (60 min and 90 min) 5 d.wk(-1) during a 3-wk period. Changes in plasma electrolytes, glucose, and lactate resulting from the exercise were also measured on 3 d of each week. Results: Each group of animals showed significant losses in ECW and TBW as a direct result of daily exercise. The magnitude of fluid loss was directly related to the intensity of the exercise, bur not to exercise duration; although the magnitude of daily fluid loss at the higher intensity exercise (12 m.min(-1)) decreased as the study progressed, possibly indicating a training effect. Conclusion: At low-intensity exercise, there is a small bur significant loss in both TBW and ECW fluids, and the magnitude of these losses does not change throughout a 3-wk exercise program. At moderate levels of exercise intensity, there is a greater loss of both TBW and ECW fluids. However, the magnitudes of these losses decrease significantly during the 3-wk exercise program, thus demonstrating a training effect.
Resumo:
Background: Exercise training has been shown to improve exercise capacity in patients with heart failure. We sought to examine the optimal strategy of exercise training for patients with heart failure. Methods: Review of the published data on the characteristics of the training program, with comparison of physiologic markers of exercise capacity in heart failure patients and healthy individuals and comparison of the change in these characteristics after all exercise training program. Results: Many factors, including the duration, supervision, and venue of exercise training; the volume of working muscle; the delivery mode (eg, continuous vs. intermittent exercise), training intensity; and the concurrent effects of medical treatments may influence the results of exercise training in heart failure. Starting in an individually prescribed and safely monitored hospital-based program, followed by progression to an ongoing and progressive home program of exercise appears to be the best solution to the barriers of anxiety, adherence, and ease of access encountered by the heart failure patient. Conclusions: Various exercise training programs have been shown to improve exercise capacity and symptom status in heart failure, but these improvements may only be preserved with an ongoing maintenance program.
Resumo:
Exercise is commonly used in the management of chronic musculoskeletal conditions, including chronic low back pain (CLBP). The focus of exercise is varied and may include parameters ranging from strength and endurance training, to specific training of muscle coordination and control. The assumption underpinning these approaches is that improved neuromuscular function will restore or augment the control and support of the spine and pelvis. In a biomechanical model of CLBP, which assumes that pain recurrence is caused by repeated mechanical irritation of pain sensitive structures [1], it is proposed that this improved control and stability would reduce mechanical irritation and lead to pain relief [1]. Although this model provides explanation for the chronicity of LBP, perpetuation of pain is more complex, and contemporary neuroscience holds the view that chronic pain is mediated by a range of changes including both peripheral (eg, peripheral sensitization) and central neuroplastic changes [2]. Although this does not exclude the role of improved control of the lumbar spine and pelvis in management of CLBP, particularly when there is peripheral sensitization, it highlights the need to look beyond outdated simplistic models. One factor that this information highlights is that the refinement of control and coordination may be more important than simple strength and endurance training for the trunk muscles. The objective of this article is to discuss the rationale for core stability exercise in the management of CLBP, to consider critical factors for its implementation, and to review evidence for efficacy of the approach.
Resumo:
Introduction/Purpose: The role of impact loading activity on bone mass is well established; however, there are little data on the effects of exercise on bone geometry and indices of bone strength. The primary purpose of this study was to compare indices of bone strength at the proximal femur (PF) between elite premenarcheal gymnasts (N = 30) and age-matched controls (N = 30). Methods: Structural properties of the proximal femur were derived from the hip analyses program and included measurement of subperiosteal width, endosteal diameter, cross-sectional area, bone mineral density, cross-section moment of inertia (CSMI), and section modulus (Z). These parameters were measured for two regions of the PF: the narrow neck (NN), and the shaft (S). In addition, a strength index (S-SI) was calculated at the shaft by dividing the Z at the shaft by the femur length. A secondary purpose was to compare bone mineral content (BMC) values at the total body, lumbar spine, and three sites at the PF (neck, trochanter, and total) between the groups. All dependent values were compared adjusting for height and weight using an ANCOVA procedure and for relative lean body mass post hoc. Results: The gymnasts had significantly greater size-adjusted strength indices (CSMI, Z, and SI) at the NN and S. Gymnasts also had significantly greater size-adjusted BMC at all sites investigated. However, these differences disappeared when adjusted for relative lean body mass. Conclusion: When adjusted for body size, gymnasts had significantly greater indices of both axial strength and bending strength at the NN region of the PF and S, as well as a greater bone SI at the femoral shaft. These differences may be related to greater relative lean body mass attained in gymnastics training.
Resumo:
OBJECTIVES: To examine the association between physical activity and inflammatory markers, with consideration for body fatness and antioxidant use. DESIGN: Cross-sectional study, using baseline data from the Health, Aging and Body Composition Study. SETTING: Metropolitan areas surrounding Pittsburgh, Pennsylvania, and Memphis, Tennessee. PARTICIPANTS: Black and white, well-functioning men and women (N=3,075), aged 70 to 79. MEASUREMENTS: Interviewer-administered questionnaires of previous-week household, walking, exercise, and occupational/volunteer physical activities. Analysis of covariance was used to examine the association between activity level and serum C-reactive protein (CRP), interleukin-6 (IL-6), and plasma tumor necrosis factor alpha (TNFalpha) with covariate adjustment. Antioxidant supplement use (multivitamin, vitamins E or C, beta carotene) was evaluated as an effect modifier of the association. RESULTS: Higher levels of exercise were associated with lower levels of CRP (P