40 resultados para electric field screening
Resumo:
The flock-level sensitivity of pooled faecal culture and serological testing using AGID for the detection of ovine Johne's disease-infected flocks were estimated using non-gold-standard methods. The two tests were compared in an extensive field trial in 296 flocks in New South Wales during 1998. In each flock, a sample of sheep was selected and tested for ovine Johne's disease using both the AGID and pooled faecal culture. The flock-specificity of pooled faecal culture also was estimated from results of surveillance and market-assurance testing in New South Wales. The overall flock-sensitivity of pooled faecal culture was 92% (95% CI: 82.4 and 97.4%) compared to 61% (50.5 and 70.9%) for serology (assuming that both tests were 100% specific). In low-prevalence flocks (estimated prevalence
Resumo:
Motivated by application of current superalgebras in the study of disordered systems such as the random XY and Dirac models, we investigate gl(2\2) current superalgebra at general level k. We construct its free field representation and corresponding Sugawara energy-momentum tensor in the non-standard basis. Three screen currents of the first kind are also presented. (C) 2003 Elsevier B.V. All rights reserved.
Influence of magnetically-induced E-fields on cardiac electric activity during MRI: A modeling study
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, time-varying gradient magnetic fields that may be able to induce electric fields (E-fields)/currents in tissues approaching the level of physiological significance. In this work we present theoretical investigations into induced E-fields in the thorax, and evaluate their potential influence on cardiac electric activity under the assumption that the sites of maximum E-field correspond to the myocardial stimulation threshold (an abnormal circumstance). Whole-body cylindrical and planar gradient coils were included in the model. The calculations of the induced fields are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, whole-body model. The potential for cardiac stimulation was evaluated using an electrical model of the heart. Twelve-lead electrocardiogram (ECG) signals were simulated and inspected for arrhythmias caused by the applied fields for both healthy and diseased hearts. The simulations show that the shape of the thorax and the conductive paths significantly influence induced E-fields. In healthy patients, these fields are not sufficient to elicit serious arrhythmias with the use of contemporary gradient sets. However, raising the strength and number of repeated switching episodes of gradients, as is certainly possible in local chest gradient sets, could expose patients to increased risk. For patients with cardiac disease, the risk factors are elevated. By the use of this model, the sensitivity of cardiac pathologies, such as abnormal conductive pathways, to the induced fields generated by an MRI sequence can be investigated. (C) 2003 Wiley-Liss, Inc.
Resumo:
Populations of the planthopper vector Perkinsiella saccharicida on sugarcane cultivars resistant (cvs Q110 and Q87), moderately resistant (cvs Q90 and Q124) and susceptible (evs NCo310 and Q 102) to Fiji disease with known field resistance scores were monitored on the plant (2000-2001) and ratoon (2001-2002) crops. In both crops, the vector population remained very low, reaching its peak in the autumn. The vector population was significantly higher on cultivars susceptible to Fiji disease than on cultivars moderately resistant and resistant to Fiji disease. The number of R saccharicida adults, nymphs and oviposition sites per plant increased with the increase in the Fiji disease susceptibility. The results suggest that under low vector density, cultivar preference by the planthopper vector mediates Fiji disease resistance in sugarcane. To obtain resistance ratings in the glasshouse that reflect field resistance, glasshouse-screening trials should be conducted under both low and high vector densities, and the cultivar preference of the planthopper vector recorded along with Fiji disease incidence.
Resumo:
In modern magnetic resonance imaging, both patients and health care workers are exposed to strong. non-uniform static magnetic fields inside and outside of the scanner. In which body movement may be able to induce electric currents in tissues which could be potentially harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in a tissue-equivalent human model when moving at various positions around the magnet. The numerical calculations are based on an efficient. quasi-static, finite-difference scheme. Three-dimensional field profiles from an actively shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The methodology presented herein can be extrapolated to very high field strengths for the evaluation of the effects of motion at a variety of field strengths and velocities. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Rice (Oryza sativa L.) plants are susceptible to low temperature during the young microspore stage, which occurs 10-12 days before heading. Low temperature at this time increases spikelet sterility which can cause massive yield loss. Increasing the cold tolerance of cultivars can reduce yield variability in temperate rice-growing environments. Two experiments were conducted in cold air screenings and two were conducted in cold water screenings to examine genotypic variation for cold tolerance, explore flowering traits related to spikelet sterility, and investigate whether the results reflect the level of cold tolerance determined previously in the field. Cold air screenings imposed day/night temperatures of 27 degrees C/13 degrees C, 25 degrees C/15 degrees C and 32 degrees C/25 degrees C following particle initiation until 50% heading, while cold water screenings maintained a relatively constant 19 degrees C. The variation in the commencement of low air temperature treatment did not have an effect on the level of spikelet sterility, indicating that exposure to low temperature during the young microspore stage was more important than the duration of exposure. Spikelet sterility of common cultivars showed a significant correlation between cold air and cold water screenings (r(2) = 0.63, p < 0.01), cold air and field screenings (r(2) = 0.52, p < 0.01) and cold water and field screenings (r(2) = 0.53, p < 0.01), indicating that cold air and cold water can be used for screening genotypes for low temperature tolerance. HSC55, M 103 and Jyoudeki were identified as cold tolerant and Doongara, Sasanishiki and Nipponbare as susceptible cultivars. There was a significant negative relationship between spikelet sterility and both the number of engorged pollen grains per anther and anther area only after imposing cold air and cold water treatment hence, it was concluded that these flowering traits were facultative in nature. In addition, cultivars originating from Australia and California were inefficient at producing filled grain with similar sized anthers containing a similar number of engorged pollen grains as cultivars from other origins. One suggested reason for this poor conversion to filled grain of cultivars from Australia and California may be associated with their small stigma area, particularly when exposed to low temperature conditions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Low temperature during microspore development increases spikelet sterility and reduces grain yield in rice (Oryza sativa L.). The objectives of this study were to determine genotypic variation in spikelet sterility in the field in response to low-temperature and then to examine the use of physio-morphological traits at flowering to screen for cold tolerance. Multiple-sown field experiments were conducted over 4 consecutive years in the rice-growing region of Australia to increase the likelihood of encountering low-temperature during microspore development. More than 50 cultivars of various origins were evaluated, with 7 cultivars common to all 4 years. The average minimum temperature for 9 days during microspore development was used as a covariate in the analysis to compare cultivars at a similar temperature. The low-temperature conditions in Year 4 identified cold-tolerant cultivars such as Hayayuki and HSC55 and susceptible cultivars such as Sasanishiki and Doongara. After low temperature conditions, spikelet sterility was negatively correlated with the number of engorged pollen grains, anther length, anther area, anther width, and stigma area. The number of engorged pollen grains and anther length were found to be facultative traits as their relationships with spikelet sterility were identified only after cold water exposure and did not exist under non-stressed conditions.
Resumo:
In modern magnetic resonance imaging (MRI), both patients and radiologists are exposed to strong, nonuniform static magnetic fields inside or outside of the scanner, in which the body movement may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in the human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasistatic, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively-shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are easy to extrapolate to very high field strengths for the safety evaluation at a variety of field strengths and motion velocities.
Resumo:
Low temperature, particularly during the reproductive stage of the development of rice, limits productivity in the Riverina region of New South Wales (NSW). This study primarily examined genotypic differences in cold damage that are associated with low temperature during reproductive development. Results from experiments in temperature-controlled rooms and the cold water facility were combined with four years of field experiments, which used natural exposure to low temperature to examine the response of over 50 cultivars from diverse origins. Plants were exposed to day/night air temperatures of 27°/13°C in temperature-controlled rooms and to a constant temperature of 19°C in the cold water facility. Low temperature treatments were imposed from panicle initiation (PI) to 50% heading. In field experiments several techniques were used to increase the likelihood of inducing cold damage such as sequential sowing dates (five to eight sowing dates each year), shallow water depths (5cm) and high nitrogen rates (e.g. 300kgN ha-1). Several cultivars were identified that were more cold tolerant than Australia’s commercial cultivars.