34 resultados para development methods
Resumo:
Purpose. Health promotion policy frameworks, recent theorizing, and research all emphasize understanding and mobilizing environmental influences to change particular health-related behaviors in specific settings. The workplace is a key environmental setting. The Checklist of Health Promotion Environments at Worksites (CHEW) was designed as a direct observation instrument to assess characteristics of worksite environments that are known to influence health-related behaviors. Methods. The CHEW is a 112-item checklist of workplace environment features hypothesized to be associated, both positively and negatively, with physical activity, healthy eating, alcohol consumption, and smoking. The three environmental domains assessed are (1) physical characteristics of the worksite, (2) features of the information environment, and (3) characteristics of the immediate neighborhood around the workplace. The conceptual rationale and development studies for the CHEW are described, and data from observational studies of 20 worksites are reported. Results. The data on CHEW-derived environmental attributes showed generally good reliability and identified meaningful sets of variables that plausibly may influence health-related behaviors. With the exception of one information environment attribute, intraclass correlation coefficients ranged from 0.80 to 1.00. Descriptive statistics on selected physical and information environment characteristics indicated that vending machines, showers, bulletin boards, and signs prohibiting smoking were common across worksites. Bicycle racks, visible stairways, and signs related to alcohol consumption, nutrition, and health. promotion were relatively uncommon. Conclusions. These findings illustrate the types of data on environmental attributes that can be derived, their relevance for program planning, and how they can characterize variability across worksites. The CHEW is a promising observational measure that has the potential to assess environmental influences on health behaviors and to evaluate workplace health promotion programs.
Resumo:
Background-In vivo methods to evaluate the size and composition of atherosclerotic lesions in animal models of atherosclerosis would assist in the testing of antiatherosclerotic drugs. We have developed an MRI method of detecting atherosclerotic plaque in the major vessels at the base of the heart in low-density lipoprotein (LDL) receptor-knockout (LDLR-/-) mice on a high-fat diet. Methods and Results-Three-dimensional fast spin-echo magnetic resonance images were acquired at 7 T by use of cardiac and respiratory triggering, with approximate to140-mum isotropic resolution, over 30 minutes. Comparison of normal and fat-suppressed images from female LDLR-/- mice I week before and 8 and 12 weeks after the transfer to a high-fat diet allowed visualization and quantification of plaque development in the innominate artery in vivo. Plaque mean cross-sectional area was significantly greater at week 12 in the LDLR-/- mice (0.14+/-0.086 mm(2) [mean+/-SD]) than in wild-type control mice on a normal diet (0.017+/-0.031 mm(2), p
Resumo:
This article reviews the progress of a personal endeavour to develop chromatography as a quantitative procedure for the determination of reaction stoichiometries and equilibrium constants governing protein interactions. As well as affording insight into an aspect of chromatography with which many protein chemists are unfamiliar, it shows the way in which minor adaptations of conventional chromatographic practices have rendered the technique one of the most powerful methods available for the characterization of interactions. That pathway towards quantification is followed from the introduction of frontal gel filtration for the study of protein self-association to the characterization of ligand binding by the biosensor variant of quantitative affinity chromatography.
Resumo:
Two methods were compared for determining the concentration of penetrative biomass during growth of Rhizopus oligosporus on an artificial solid substrate consisting of an inert gel and starch as the sole source of carbon and energy. The first method was based on the use of a hand microtome to make sections of approximately 0.2- to 0.4-mm thickness parallel to the substrate surface and the determination of the glucosamine content in each slice. Use of glucosamine measurements to estimate biomass concentrations was shown to be problematic due to the large variations in glucosamine content with mycelial age. The second method was a novel method based on the use of confocal scanning laser microscopy to estimate the fractional volume occupied by the biomass. Although it is not simple to translate fractional volumes into dry weights of hyphae due to the lack of experimentally determined conversion factors, measurement of the fractional volumes in themselves is useful for characterizing fungal penetration into the substrate. Growth of penetrative biomass in the artificial model substrate showed two forms of growth with an indistinct mass in the region close to the substrate surface and a few hyphae penetrating perpendicularly to the surface in regions further away from the substrate surface. The biomass profiles against depth obtained from the confocal microscopy showed two linear regions on log-linear plots, which are possibly related to different oxygen availability at different depths within the substrate. Confocal microscopy has the potential to be a powerful tool in the investigation of fungal growth mechanisms in solid-state fermentation. (C) 2003 Wiley Periodicals, Inc.