63 resultados para degradation of reactive dyes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) includes a unique glycine-alanine repeat domain that inhibits the endogenous presentation of cytotoxic T lymphocyte (CTL) epitopes through the class I pathway by blocking proteasome-dependent degradation of this antigen. This immune evasion mechanism has been implicated in the pathogenesis of EBV-associated diseases. Here, we show that cotranslational ubiquitination combined with N-end rule targeting enhances the intracellular degradation of EBNA1, thus resulting in a dramatic reduction in the half-life of the antigen. Using DNA expression vectors encoding different forms of ubiquitinated EBNA1 for in vivo studies revealed that this rapid degradation, remarkably, leads to induction of a very strong CTL response to an EBNA1-specific CTL epitope. Furthermore, this targeting also restored the endogenous processing of HLA class I-restricted CTL epitopes within EBNA1 for immune recognition by human EBV-specific CTLs. These observations provide, for the first time, evidence that the glycine-alanine repeat-mediated proteasomal block on EBNA1 can be reversed by specifically targeting this antigen for rapid degradation resulting in enhanced CD8+ T cell-mediated recognition in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton's reaction. Previous Studies Suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign Compounds during. antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP +) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and Superoxide production. Nitric oxide production was increased in activated macrophages or WT mice, but not in TRACP+ mice, Macrophages from TRACP+ mice showed increased capacity or bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense systern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microorganisms that hydrolyse the ester linkages between phenolic acids and polysaccharides in plant cell walls are potential sources of enzymes for the degradation of lignocellulosic waste. An anaerobic, mesophilic, spore-forming, xylanolytic bacterium with high hydroxy cinnamic acid esterase activity was isolated from the gut of the grass-eating termite Tumilitermes pastinator. The bacterium was motile and rod-shaped, stained gram-positive, had an eight-layered cell envelope, and.formed endospores. Phylogenetic analysis based on 16S rRNA indicated that the bacterium is closely related to Clostridium xylanolyticum and is grouped with polysaccharolytic strains of clostridia. A wide range of carbohydrates were fermented, and growth was stimulated by either xylan or cellobiose as substrates. The bacterium hydrolysed and then hydrogenated the hydroxy cinnamic acids (ferulic and p-coumaric acids), which are esterified to arabinoxylan in plant cell walls. Three cytoplasmic enzymes with hydroxy cinnamic acid esterase activity were identified using non-denaturing gel electrophoresis. This bacterium possesses an unusual multilayered cell envelope in which both leaflets of the cytoplasmic membrane, the peptidoglycan layer and the S layer are clearly discernible. The fate of all these components was easily followed throughout the endospore formation process. The peptidoglycan component persisted during the entire morphogenesis. It was seen to enter the septum and to pass with the engulfing membranes to surround the prespore. It eventually expanded to form the cortex, verification for the peptidoglycan origin of the cortex. Sporogenic vesicles, which are derived from the cell wall peptidoglycan, were associated with the engulfment process. Spore coat fragments appeared early, in stage II, though spore coat formation was not complete until after cortex formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods of promoting the radiation-induced cross linking of poly(tetrafluoro-ethylene-co-perfluoromethyl vinyl ether) (TFE/PMVE) have been investigated. Greater control of the crosslinking and chain-scission reactions was achieved by varying the radiolysis temperature. This was attributed to temperature affecting the mobilities of reactive species such as polymeric free radicals. These reactive species are precursors to radiation-induced cross links and chain-ends. Analysis of the sol/gel behaviour, tensile properties and FTIR indicated that the optimum temperature for the radiation crosslinking of TFE/PMVE, at a dose of 150 kGy, was 263 K. This temperature was 10 K below the glass transition temperature. Incorporation of 1 wt% triallyl isocyanurate (TAIC) greatly amplified the radiation crosslinking of TFE/PMVE, The dose for gelation was decreased by 70%, and the additive imparted superior mechanical properties compared to the neat irradiated TFE/PMVE. Electron spin resonance (ESR) measurements showed higher radical yields at 77 K with the 1 wt% TAIC, indicating that the crosslinking promoter was acting as a radical trap. (C) 1999 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea temperatures in many tropical regions have increased by almost 1 degrees C over the past 100 years, and are currently increasing at similar to 1-2 degrees C per century. Coral bleaching occurs when the thermal tolerance of corals and their photosynthetic symbionts (zooxanthellae) is exceeded. Mass coral bleaching has occurred in association with episodes of elevated sea temperatures over the past 20 years and involves the loss of the zooxanthellae following chronic photoinhibition. Mass bleaching has resulted in significant losses of live coral in many parts of the world. This paper considers the biochemical, physiological and ecological perspectives of coral bleaching. It also uses the outputs of four runs from three models of global climate change which simulate changes in sea temperature and hence how the frequency and intensity of bleaching events will change over the next 100 years. The results suggest that the thermal tolerances of reef-building corals are likely to be exceeded every year within the next few decades. Events as severe as the 1998 event, the worst on record, are likely to become commonplace within 20 years. Most information suggests that the capacity for acclimation by corals has already been exceeded, and that adaptation will be too slow to avert a decline in the quality of the world's reefs. The rapidity of the changes that are predicted indicates a major problem for tropical marine ecosystems and suggests that unrestrained warming cannot occur without the loss and degradation of coral reefs on a global scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the southern Great Barrier Reef, Haliotis asinina (Vetigastropoda: Pleurotomarioidea) synchronously spawn every 2 wk in a predictable fashion. allowing detailed analysis of reproduction, gametogenesis, and gonad development. Histological examination of the ovaries of members of the Heron Reef population during this semilunar cycle reveals that oogenesis is also synchronous and predictable, and requires more than two spawning cycles (i.e. >28 days) to complete. Shortly after a spawning event the ovary comprises two cohorts of primary oocytes, one of which will be released at the next spawning event, and clusters of oogonia. At this time there is a rapid proliferation and expansion of trabeculae, germinal epithelial, and oogonia, and a dramatic increase in the size of the vitellogenic oocytes to be: spawned at the next spawning event. Within 4 days these oocytes have filled the ovary. On the day of the next spawning a lumen forms in the ovary as a result of localized degradation of trabeculae. The large primary oocytes dissociate from the receding trabeculae. initiate maturation, and accumulate in the lumen; these oocytes become embedded in a jelly coat layer. The next cohort of oocytes remain attached to the trabeculae. The jelly coat appears to be completely dissolved within 30 min of spawning. Comparison of the oogenesis and ovary development in II. asinina with other abalone species indicates that these processes are very similar in tropical and temperate abalone. This suggests that insights into the regulation of reproduction and spawning in H. asinina are likely to be applicable to other haliotids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous experimental studies showed that the presence of O-2 greatly enhances NO-carbon reaction while it depresses N2O-carbon reaction on carbon surfaces. A popular explanation for the rate increase is that the addition of O-2 results in a large number of reactive carbon-oxygen complexes, and decomposition of these complexes produces many more active sites. The explanation for the latter is that excess O-2 simply blocks the active sites, thus reducing the rate of N2O-carbon reaction. The contradiction is that O-2 can also occupy active sites in NO-carbon reaction and produce active sites in N2O-carbon reduction. By using ab initio calculation, we find that the opposite roles of O-2 are caused by the different manners of N2O and NO adsorption on the carbon surface. In the presence of excess O-2, most Of the active sites are occupied by oxygen groups. In the competition for the remaining active sites, NO is more likely to chemisorb in the form of NO2 and NO chemisorption is mon thermodynamically favorable than O-2 chemisorption. By contrast, the presence of excess O-2 makes N2O chemisorption much less thermally stable either on the consecutive edge sites or edge sites isolated by semiquinone oxygen. A detailed analysis and discussion of the reaction mechanism of N-2 formation from NO- and N2O-carbon reaction in the presence of O-2 is presented in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA that enters the circulation is rapidly cleared both by tissue uptake and by DNase-mediated degradation. In this study, we have examined the uptake of linear plasmid DNA in an isolated perfused liver model and following intra-arterial administration to rats. We found that the DNA was rapidly taken up by the isolated perfused liver without degradation. The single-pass extraction ratio was 0.76 +/- 0.05, the mean transit time was 15.3 +/- 3.6 s, and the volume of distribution was 0.29 +/- 0.07 ml/g. Hepatic uptake was saturable and was inhibited by polyinosinic acid or polycationic liposomes but not by condensation of the DNA with polylysine. When the linear plasmid DNA was administered in vivo, plasma half-life was 3.1 +/- 0.2 min, volume of distribution was 670 +/- 85 ml/kg, and clearance was 32 +/- 4 min. Coadministration of cationic liposomes decreased the volume of distribution to 180 +/- 28 ml/kg as well as the half-life (2.6 +/- 0.2 min). By contrast, polyinosinic acid significantly increased the circulating half-life (7.7 +/- 0.5 min), decreased the volume of distribution (95 +/- 17 ml/kg), and partially inhibited DNA degradation. When administered along with the liposomes and the polyinosinic acid, the distribution of plasmid-derived radioactivity decreased in the liver and increased in most other peripheral tissues. This study shows that pharmacological manipulation of the uptake and degradation of DNA can alter its distribution and clearance in vivo. These results may be useful in optimizing gene delivery procedures for in vivo gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO3-, Cl-, PO43-) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed tone-way ANOVA, p < 0.001) indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An understanding of the biochemical control of dendritic cell (DC) differentiation/activation is essential for improving T cell immunity by various immunotherapeutic approaches, including DC immunization. Ligation of CD40 enhances DC function, including conditioning for CTL priming. NF-kappaB, and particularly RelB, is an essential control pathway for myeloid DC differentiation. Furthermore, RelB regulates B cell Ag-presenting function. We hypothesized that CD40 ligand (CD40L) and TNF-alpha, which differ in their capacity to condition DC, would also differ in their capacity to activate NF-kappaB. DC differentiated for 2 days from monocytes in the presence of GM-CSF and IL-4 were used as a model, as NF-kappaB activity was constitutively low. The capacity of DC to activate T cells following CD40L treatment was enhanced compared with TNF-alpha treatment, and this was NF-kappaB dependent. Whereas RelB/p50 translocation induced by TNF-alpha was attenuated after 6 h, RelB/p50 nuclear translocation induced by CD40L was sustained for at least 24 h. The mechanism of this difference related to enhanced degradation of IkappaBalpha following CD40L stimulation. However, NF-kappaB activation induced by TNF-alpha could be sustained by blocking autocrine IL-10. These data indicate that NF-kappaB activation is essential for T cell activation by DC, and that this function is enhanced if DC NF-kappaB activation is prolonged. Because IL-10 moderates DC NF-kappaB activation by TNF-alpha, sustained NF-kappaB activation can be achieved by blocking IL-10 in the presence of stimuli that induce TNF-alpha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degradation of coral reef ecosystems began centuries ago, but there is no global summary of the magnitude of change. We compiled records, extending back thousands of years, of the status and trends of seven major guilds of carnivores, herbivores, and architectural species from 14 regions. Large animals declined before small animals and architectural species, and Atlantic reefs declined before reefs in the Red Sea and Australia, but the trajectories of decline were markedly similar worldwide. All reefs were substantially degraded long before outbreaks of coral disease and bleaching. Regardless of these new threats, reefs will not survive without immediate protection from human exploitation over large spatial scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterologous genes encoding proproteins, including proinsulin, generally produce mature protein when expressed in endocrine cells while unprocessed or partially processed protein is produced in non-endocrine cells. Proproteins, which are normally processed in the regulated pathway restricted to endocrine cells, do not always contain the recognition sequence for cleavage by furin, the endoprotease specific to the constitutive pathway, the principal protein processing pathway in non-endocrine cells. Human proinsulin consists of B-Chain-C-peptide-A-Chain and cleavage at the B/C and C/A junctions is required for processing. The B/C, but not the C/A junction, is recognised and cleaved in the constitutive pathway. We expressed a human proinsulin and a mutated proinsulin gene with an engineered furin recognition sequence at the C/A junction and compared the processing efficiency of the mutant and native proinsulin in Chinese Hamster Ovary cells. The processing efficiency of the mutant proinsulin was 56% relative to 0.7% for native proinsulin. However, despite similar levels of mRNA being expressed in both cell lines, the absolute levels of immunoreactive insulin, normalized against mRNA levels, were 18-fold lower in the mutant proinsulin-expressing cells. As a result, there was only a marginal increase in absolute levels of insulin produced by these cells. This unexpected finding may result from preferential degradation of insulin in non-endocrine cells which lack the protection offered by the secretory granules found in endocrine cells.