60 resultados para computer science, information systems
Resumo:
In this paper, we present a novel indexing technique called Multi-scale Similarity Indexing (MSI) to index image's multi-features into a single one-dimensional structure. Both for text and visual feature spaces, the similarity between a point and a local partition's center in individual space is used as the indexing key, where similarity values in different features are distinguished by different scale. Then a single indexing tree can be built on these keys. Based on the property that relevant images have similar similarity values from the center of the same local partition in any feature space, certain number of irrelevant images can be fast pruned based on the triangle inequity on indexing keys. To remove the dimensionality curse existing in high dimensional structure, we propose a new technique called Local Bit Stream (LBS). LBS transforms image's text and visual feature representations into simple, uniform and effective bit stream (BS) representations based on local partition's center. Such BS representations are small in size and fast for comparison since only bit operation are involved. By comparing common bits existing in two BSs, most of irrelevant images can be immediately filtered. To effectively integrate multi-features, we also investigated the following evidence combination techniques-Certainty Factor, Dempster Shafer Theory, Compound Probability, and Linear Combination. Our extensive experiment showed that single one-dimensional index on multi-features improves multi-indices on multi-features greatly. Our LBS method outperforms sequential scan on high dimensional space by an order of magnitude. And Certainty Factor and Dempster Shafer Theory perform best in combining multiple similarities from corresponding multiple features.
Resumo:
Summarizing topological relations is fundamental to many spatial applications including spatial query optimization. In this article, we present several novel techniques to effectively construct cell density based spatial histograms for range (window) summarizations restricted to the four most important level-two topological relations: contains, contained, overlap, and disjoint. We first present a novel framework to construct a multiscale Euler histogram in 2D space with the guarantee of the exact summarization results for aligned windows in constant time. To minimize the storage space in such a multiscale Euler histogram, an approximate algorithm with the approximate ratio 19/12 is presented, while the problem is shown NP-hard generally. To conform to a limited storage space where a multiscale histogram may be allowed to have only k Euler histograms, an effective algorithm is presented to construct multiscale histograms to achieve high accuracy in approximately summarizing aligned windows. Then, we present a new approximate algorithm to query an Euler histogram that cannot guarantee the exact answers; it runs in constant time. We also investigate the problem of nonaligned windows and the problem of effectively partitioning the data space to support nonaligned window queries. Finally, we extend our techniques to 3D space. Our extensive experiments against both synthetic and real world datasets demonstrate that the approximate multiscale histogram techniques may improve the accuracy of the existing techniques by several orders of magnitude while retaining the cost efficiency, and the exact multiscale histogram technique requires only a storage space linearly proportional to the number of cells for many popular real datasets.
Resumo:
In many advanced applications, data are described by multiple high-dimensional features. Moreover, different queries may weight these features differently; some may not even specify all the features. In this paper, we propose our solution to support efficient query processing in these applications. We devise a novel representation that compactly captures f features into two components: The first component is a 2D vector that reflects a distance range ( minimum and maximum values) of the f features with respect to a reference point ( the center of the space) in a metric space and the second component is a bit signature, with two bits per dimension, obtained by analyzing each feature's descending energy histogram. This representation enables two levels of filtering: The first component prunes away points that do not share similar distance ranges, while the bit signature filters away points based on the dimensions of the relevant features. Moreover, the representation facilitates the use of a single index structure to further speed up processing. We employ the classical B+-tree for this purpose. We also propose a KNN search algorithm that exploits the access orders of critical dimensions of highly selective features and partial distances to prune the search space more effectively. Our extensive experiments on both real-life and synthetic data sets show that the proposed solution offers significant performance advantages over sequential scan and retrieval methods using single and multiple VA-files.
Resumo:
Business environments have become exceedingly dynamic and competitive in recent times. This dynamism is manifested in the form of changing process requirements and time constraints. Workflow technology is currently one of the most promising fields of research in business process automation. However, workflow systems to date do not provide the flexibility necessary to support the dynamic nature of business processes. In this paper we primarily discuss the issues and challenges related to managing change and time in workflows representing dynamic business processes. We also present an analysis of workflow modifications and provide feasibility considerations for the automation of this process.
Information systems audit and control issues for enterprise management systems: Qualitative evidence
Resumo:
Because organizations are making large investments in Information systems (IS), efficient IS project management has been found critical to success. This study examines how the use of incentives can improve the project success. Agency theory is used to: identify motivational factors of project success, help the IS owners to understand to what extent management incentives can improve IS development and implementation (ISD/I). The outcomes will help practitioners and researchers to build on theoretical model of project management elements which lead to project success. Given the principal-agent nature of most significant scale of IS development, insights that will allow for greater alignment of the agent’s goals with those of the principal through incentive contracts, will serve to make ISD/I both more efficient and more effective, leading to more successful IS projects.
Resumo:
E-Business Information Systems (eBIS) are Information Systems (IS) that support organizations to realize their e-Business strategy resulting in various benefits. Therefore those systems strongly focus on fulfilment of the e-business requirements. In order to realise the expected benefits, organizations need to turn to their eBIS and measure the maturity of those systems. In doing so, they need to identify the status of those systems with regards to their suitability to support the e-Business strategy, while also identifying required IS improvements. In our research we aim to develop a maturity model, particularly dedicated to the area of e-Business Information Systems, which can be used easily and objectively to measure of the current maturity of any Information System that supports e-Business. This research-in-progress paper presents initial results of our research.
Resumo:
These are the full proceedings of the conference.