96 resultados para british automotive industry
Resumo:
Community awareness of the sustainable use of land, water and vegetation resources is increasing. The sustainable use of these resources is pivotal to sustainable farming systems. However, techniques for monitoring the sustainable management of these resources are poorly understood and untested. We propose a framework to benchmark and monitor resources in the grains industry. Eight steps are listed below to achieve these objectives: (i) define industry issues; (ii) identify the issues through growers, stakeholder and community consultation; (iii) identify indicators (measurable attributes, properties or characteristics) of sustainability through consultation with growers, stakeholders, experts and community members, relating to: crop productivity; resource maintenance/enhancement; biodiversity; economic viability; community viability; and institutional structure; (iv) develop and use selection criteria to select indicators that consider: responsiveness to change; ease of capture; community acceptance and involvement; interpretation; measurement error; stability, frequency and cost of measurement; spatial scale issues; and mapping capability in space and through time. The appropriateness of indicators can be evaluated using a decision making system such as a multiobjective decision support system (MO-DSS, a method to assist in decision making from multiple and conflicting objectives); (v) involve stakeholders and the community in the definition of goals and setting benchmarking and monitoring targets for sustainable farming; (vi) take preventive and corrective/remedial action; (vii) evaluate effectiveness of actions taken; and (viii) revise indicators as part of a continual improvement principle designed to achieve best management practice for sustainable farming systems. The major recommendations are to: (i) implement the framework for resources (land, water and vegetation, economic, community and institution) benchmarking and monitoring, and integrate this process with current activities so that awareness, implementation and evolution of sustainable resource management practices become normal practice in the grains industry; (ii) empower the grains industry to take the lead by using relevant sustainability indicators to benchmark and monitor resources; (iii) adopt a collaborative approach by involving various industry, community, catchment management and government agency groups to minimise implementation time. Monitoring programs such as Waterwatch, Soilcheck, Grasscheck and Topcrop should be utilised; (iv) encourage the adoption of a decision making system by growers and industry representatives as a participatory decision and evaluation process. Widespread use of sustainability indicators would assist in validating and refining these indicators and evaluating sustainable farming systems. The indicators could also assist in evaluating best management practices for the grains industry.
Resumo:
The CASMIN Project is arguably the most influential contemporary study of class mobility in the world. However, CASMIN results with respect to weak vertical status effects on class mobility have been extensively criticized. Drawing on arguments about how to model vertical mobility, Hout and Hauser (1992) show that class mobility is strongly determined by vertical socioeconomic differences. This paper extends these arguments by estimating the CASMIN model while explicitly controlling for individual determinants of socioeconomic attainment. Using the 1972 Oxford Mobility Data and the 1979 and 1983 British Election Studies, the paper employs mixed legit models to show how individual socioeconomic factors and categorical differences between classes shape intergenerational mobility. The findings highlight the multidimensionality of class mobility and its irreducibility to vertical movement up and down a stratification hierarchy.
Resumo:
The British agricultural sector is either already in or rapidly approaching some sort of crisis. Two features are particularly significant in the political response to the current situation. First, there is an increasingly neoliberal approach to agricultural policy. Sec end, agricultural policy per se is being subsumed with wider rural policies. In this paper we question the rationality of both these trends, both theoretically through 'new wave regulation theory' and by relating the British situation to the recent experiences of the agricultural sectors in Australia and New Zealand.
Forecasting regional crop production using SOI phases: an example for the Australian peanut industry
Resumo:
Using peanuts as an example, a generic methodology is presented to forward-estimate regional crop production and associated climatic risks based on phases of the Southern Oscillation Index (SOI). Yield fluctuations caused by a highly variable rainfall environment are of concern to peanut processing and marketing bodies. The industry could profitably use forecasts of likely production to adjust their operations strategically. Significant, physically based lag-relationships exist between an index of ocean/atmosphere El Nino/Southern Oscillation phenomenon and future rainfall in Australia and elsewhere. Combining knowledge of SOI phases in November and December with output from a dynamic simulation model allows the derivation of yield probability distributions based on historic rainfall data. This information is available shortly after planting a crop and at least 3-5 months prior to harvest. The study shows that in years when the November-December SOI phase is positive there is an 80% chance of exceeding average district yields. Conversely, in years when the November-December SOI phase is either negative or rapidly falling there is only a 5% chance of exceeding average district yields, but a 95% chance of below average yields. This information allows the industry to adjust strategically for the expected volume of production. The study shows that simulation models can enhance SOI signals contained in rainfall distributions by discriminating between useful and damaging rainfall events. The methodology can be applied to other industries and regions.