57 resultados para bidirectional associative memory neural networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High performance video codec is mandatory for multimedia applications such as video-on-demand and video conferencing. Recent research has proposed numerous video coding techniques to meet the requirement in bandwidth, delay, loss and Quality-of-Service (QoS). In this paper, we present our investigations on inter-subband self-similarity within the wavelet-decomposed video frames using neural networks, and study the performance of applying the spatial network model to all video frames over time. The goal of our proposed method is to restore the highest perceptual quality for video transmitted over a highly congested network. Our contributions in this paper are: (1) A new coding model with neural network based, inter-subband redundancy (ISR) prediction for video coding using wavelet (2) The performance of 1D and 2D ISR prediction, including multiple levels of wavelet decompositions. Our result shows a short-term quality enhancement may be obtained using both 1D and 2D ISR prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposed a novel model for short term load forecast in the competitive electricity market. The prior electricity demand data are treated as time series. The forecast model is based on wavelet multi-resolution decomposition by autocorrelation shell representation and neural networks (multilayer perceptrons, or MLPs) modeling of wavelet coefficients. To minimize the influence of noisy low level coefficients, we applied the practical Bayesian method Automatic Relevance Determination (ARD) model to choose the size of MLPs, which are then trained to provide forecasts. The individual wavelet domain forecasts are recombined to form the accurate overall forecast. The proposed method is tested using Queensland electricity demand data from the Australian National Electricity Market. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring perceptions of customers can be a major problem for marketers of tourism and travel services. Much of the problem is to determine which attributes carry most weight in the purchasing decision. Older travellers weigh many travel features before making their travel decisions. This paper presents a descriptive analysis of neural network methodology and provides a research technique that assesses the weighting of different attributes and uses an unsupervised neural network model to describe a consumer-product relationship. The development of this rich class of models was inspired by the neural architecture of the human brain. These models mathematically emulate the neurophysical structure and decision making of the human brain, and, from a statistical perspective, are closely related to generalised linear models. Artificial neural networks or neural networks are, however, nonlinear and do not require the same restrictive assumptions about the relationship between the independent variables and dependent variables. Using neural networks is one way to determine what trade-offs older travellers make as they decide their travel plans. The sample of this study is from a syndicated data source of 200 valid cases from Western Australia. From senior groups, active learner, relaxed family body, careful participants and elementary vacation were identified and discussed. (C) 2003 Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work by Siegelmann has shown that the computational power of recurrent neural networks matches that of Turing Machines. One important implication is that complex language classes (infinite languages with embedded clauses) can be represented in neural networks. Proofs are based on a fractal encoding of states to simulate the memory and operations of stacks. In the present work, it is shown that similar stack-like dynamics can be learned in recurrent neural networks from simple sequence prediction tasks. Two main types of network solutions are found and described qualitatively as dynamical systems: damped oscillation and entangled spiraling around fixed points. The potential and limitations of each solution type are established in terms of generalization on two different context-free languages. Both solution types constitute novel stack implementations - generally in line with Siegelmann's theoretical work - which supply insights into how embedded structures of languages can be handled in analog hardware.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalization performance in recurrent neural networks is enhanced by cascading several networks. By discretizing abstractions induced in one network, other networks can operate on a coarse symbolic level with increased performance on sparse and structural prediction tasks. The level of systematicity exhibited by the cascade of recurrent networks is assessed on the basis of three language domains. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: Targeting peptides direct nascent proteins to their specific subcellular compartment. Knowledge of targeting signals enables informed drug design and reliable annotation of gene products. However, due to the low similarity of such sequences and the dynamical nature of the sorting process, the computational prediction of subcellular localization of proteins is challenging. Results: We contrast the use of feed forward models as employed by the popular TargetP/SignalP predictors with a sequence-biased recurrent network model. The models are evaluated in terms of performance at the residue level and at the sequence level, and demonstrate that recurrent networks improve the overall prediction performance. Compared to the original results reported for TargetP, an ensemble of the tested models increases the accuracy by 6 and 5% on non-plant and plant data, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential pathophysiological roles of estrogen receptors alpha (ERα) and beta (ERβ) are of particular interest for phytochemical screening. A QSAR incorporating theoretical descriptors was developed in the present study utilizing sequential multiple-output artificial neural networks. Significant steric, constitutional, topological and electronic descriptors were identified enabling ER affinity differentiation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a neural network based technique for the classification of segments of road images into cracks and normal images. The density and histogram features are extracted. The features are passed to a neural network for the classification of images into images with and without cracks. Once images are classified into cracks and non-cracks, they are passed to another neural network for the classification of a crack type after segmentation. Some experiments were conducted and promising results were obtained. The selected results and a comparative analysis are included in this paper.