68 resultados para ball mill
Resumo:
Extensive in-situ testings has shown that blast fragmentation influences the performance of downstream processes in a mine, and as a consequence, the profit of the whole operation can be greatly improved through optimised fragmentation. Other unit operations like excavation, crushing and grinding can all be assisted by altering the blast-induced fragmentation. Experimental studies have indicated that a change in blasting practice would not only influence fragmentation but fragment strength as well. The strength of the fragments produced in a blast is clearly important to the performance of the crushing and grinding circuit as it affects the energy required to break the feed to a target product size. In order to validate the effect of blasting on fragment strength several lumps of granite were blasted, under controlled conditions, using three very different explosive products. The resulting fragments were subjected to standard comminution ore characterisation tests. Obtained comminution parameters were then used to simulate the performance of a SAG mill. Modelling results indicate that changes in post blast residual rock fragment strength significantly influences the performance of the SAG mill, producing up to a 20% increase in throughput. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Journalists have always used equipment which has been generally available in the communities in which they worked. This has been a result both of economy and necessity, since they found they had to connect with their audiences using means that were available to the audience, not just to the sender. Newspapers sold on street corners in the very early media days; SMS and email have become the rule for the early 21st century. This development also admits the possibility of the roles of the communication professional and the community merging during the “public journalism” process, and has become most recently evident in the areas around the Bay of Bengal, struck by the tsunami on December 26, 2004, especially in the Indonesian province of Banda Aceh, and in the Andaman and Nicobar Islands, where tiny portable radios, featuring solar panels and hand-cranked dynamos, have suddenly become part of a vital news media channel. In this article participant-observation and personal interview techniques are used to record and compare many of the digital channels used by news and information senders up to 2005. It also investigates the level of genuine participation which these new technologies have brought to the communications process.
Resumo:
A systematic investigation was performed on the hydrogen storage properties of mechano-chemically prepared MgH2/Single-walled carbon nanotube (SWNT) composites. It is found that the hydrogen absorption capacity and hydriding kinetics of the composites were dependent on the addition amount of SWNTs as well as milling time. A 5 wt.% addition of SVVNTs is optimum to facilitate the hydrogen absorption and desorption of MgH2. The composite MgH2/5 wt.% SWNTs milled for 10h can absorb 6.7 wt.% hydrogen within about 2 min at 573 K, and desorb 6 wt.% hydrogen in about 5 min at 623 K. Prolonging the milling time over 10 h leads to a serious degradation on hydrogen storage property of the MgH2/SWNT composite, and property/structure investigations suggest that the property degradation comes from the structure destruction of the SWNTs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The patterns of rock comminution within tumbling mills, as well as the nature of forces, are of significant practical importance. Discrete element modelling (DEM) has been used to analyse the pattern of specific energy applied to rock, in terms of spatial distribution within a pilot AG/SAG mill. We also analysed in some detail the nature of the forces, which may result in rock comminution. In order to examine the distribution of energy applied within the mill, the DEM models were compared with measured particle mass losses, in small scale AG and SAG mill experiments. The intensity of contact stresses was estimated using the Hertz theory of elastic contacts. The results indicate that in the case of the AG mill, the highest intensity stresses and strains are likely to occur deep within the charge, and close to the base. This effect is probably more pronounced for large AG mills. In the SAG mill case, the impacts of the steel balls on the surface of the charge are likely to be the most potent. In both cases, the spatial pattern of medium-to-high energy collisions is affected by the rotational speed of the mill. Based on an assumed damage threshold for rock, in terms of specific energy introduced per single collision, the spatial pattern of productive collisions within each charge was estimated and compared with rates of mass loss. We also investigated the nature of the comminution process within AG vs. SAG mill, in order to explain the observed differences in energy utilisation efficiency, between two types of milling. All experiments were performed using a laboratory scale mill of 1.19 m diameter and 0.31 m length, equipped with 14 square section lifters of height 40 mm. (C) 2006 Elsevier Ltd. All rights reserved.
Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media
Resumo:
DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.
Resumo:
Morphology, occlusal surface topography, macrowear, and microwear features of parrotfish pharyngeal teeth were investigated to relate microstructural characteristics to the function of the pharyngeal mill using scanning electron microscopy of whole and sectioned pharyngeal jaws and teeth. Pharyngeal tooth migration is anterior in the lower jaw (fifth ceratobranchial) and posterior in the upper jaw (paired third pharyngobranchials), making the interaction of occlusal surfaces and wear-generating forces complex. The extent of wear can be used to define three regions through which teeth migrate: a region containing newly erupted teeth showing little or no wear; a midregion in which the apical enameloid is swiftly worn; and a region containing teeth with only basal enameloid remaining, which shows low to moderate wear. The shape of the occlusal surface alters as the teeth progress along the pharyngeal jaw, generating conditions that appear suited to the reduction of coral particles. It is likely that the interaction between these particles and algal cells during the process of the rendering of the former is responsible for the rupture of the latter, with the consequent liberation of cell contents from which parrotfish obtain their nutrients.
Resumo:
Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu (x = 0-7.0) bulk alloys were prepared by sintering the mechanically alloyed powders at various temperatures. The microstructure changes of the as consolidated powders in the course of sintering were analyzed by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction analysis and transmission electron microscopy. It has been found that, with respect to the Al-10 wt.%Pb-x wt.%Cu alloy, CuAl2 and Cu9Al4 phases formed in the milling process, and the amount of CuAl2 phase increased while the Cu9Al4 phase disappeared gradually in the sintering process. In both Al-10 wt.%Pb and Al-10 wt.%Pb-x wt.%Cu alloys, the sintering process results in the coarsening of Pb phase and the growth rate of Pb phase fulfills the Lifshitz-Slyozov-Wagner equation even though the size of the Pb phase was in nanometer range. The Pb particle exhibits cuboctahedral morphology and has a cubic to cubic orientation relationship with the Al matrix. The addition of Cu strongly depressed the growth rate of Pb. Contamination induced by milling has apparent influence on the microstructure of the sintered alloys. Al7Cu2Fe and aluminium oxide phases were identified in the sintered alloys. The cuboctahedral morphology of Pb particles was broken up by the presence of the oxide phase. (c) 2006 Elsevier B.V. All rights reserved.