79 resultados para auditory EEG
Resumo:
PURPOSE. The driving environment is becoming increasingly complex, including both visual and auditory distractions within the in- vehicle and external driving environments. This study was designed to investigate the effect of visual and auditory distractions on a performance measure that has been shown to be related to driving safety, the useful field of view. METHODS. A laboratory study recorded the useful field of view in 28 young visually normal adults (mean 22.6 +/- 2.2 years). The useful field of view was measured in the presence and absence of visual distracters (of the same angular subtense as the target) and with three levels of auditory distraction (none, listening only, listening and responding). RESULTS. Central errors increased significantly (P < 0.05) in the presence of auditory but not visual distracters, while peripheral errors increased in the presence of both visual and auditory distracters. Peripheral errors increased with eccentricity and were greatest in the inferior region in the presence of distracters. CONCLUSIONS. Visual and auditory distracters reduce the extent of the useful field of view, and these effects are exacerbated in inferior and peripheral locations. This result has significant ramifications for road safety in an increasingly complex in-vehicle and driving environment.
Resumo:
In disorders such as sleep apnea, sleep is fragmented with frequent EEG-arousal (EEGA) as determined via changes in the sleep-electroencephalogram. EEGA is a poorly understood, complicated phenomenon which is critically important in studying the mysteries of sleep. In this paper we study the information flow between the left and right hemispheres of the brain during the EEGA as manifested through inter-hemispheric asynchrony (IHA) of the surface EEG. EEG data (using electrodes A1/C4 and A2/C3 of international 10-20 system) was collected from 5 subjects undergoing routine polysomnography (PSG). Spectral correlation coefficient (R) was computed between EEG data from two hemispheres for delta-delta(0.5-4 Hz), theta-thetas(4.1-8 Hz), alpha-alpha(8.1-12 Hz) & beta-beta(12.1-25 Hz) frequency bands, during EEGA events. EEGA were graded in 3 levels as (i) micro arousals (3-6 s), (ii) short arousals (6.1-10 s), & (iii) long arousals (10.1-15 s). Our results revealed that in beta band, IHA increases above the baseline after the onset of EEGA and returns to the baseline after the conclusion of event. Results indicated that the duration of EEGA events has a direct influence on the onset of IHA. The latency (L) between the onset of arousals and IHA were found to be L=2plusmn0.5 s (for micro arousals), 4plusmn2.2 s (short arousals) and 6.5plusmn3.6 s (long arousals)
Exploring auditory displays to support anaesthesia monitoring: Six questions from a research program