88 resultados para arable cropping
Resumo:
Land degradation in the Philippine uplands is severe and widespread. Most upland areas are steep, and intense rainfall on soils disturbed by intensive agriculture can produce high rates of soil loss. This has serious implications for the economic welfare of a growing upland population with few feasible livelihood alternatives. Hedgerow intercropping can greatly reduce soil loss from annual cropping systems and has been considered an appropriate technology for soil conservation research and extension in the Philippine uplands. However; adoption of hedgerow intercropping has been sporadic and transient, rarely continuing once external support has been withdrawn. The objective of this paper is to investigate the economic incentives for farmers in the Philippine uplands to adopt hedgerow intercropping relative to traditional open-field maize farming. Cost-benefit analysis is used to compare the economic viability of hedgerow intercropping, as it has been promoted to upland farmers, with the viability of traditional methods of open-field farming. The APSIM and SCUAF models were used to predict the effect of soil erosion on maize yields from open-field farming and hedgerow intercropping. The results indicate that there have been strong economic incentives for farmers with limited planning horizons to reject hedgerow intercropping because the benefits of sustained yields are not realized rapidly enough to compensate for high establishment costs. Alternative forms of hedgerow intercropping such as natural vegetation and grass strips reduce establishment and maintenance costs and are therefore more economically attractive to farmers than hedgerow intercropping with shrub legumes. The long-term economic viability of hedgerow intercropping depends on the economic setting and the potential for hedgerow intercropping to sustain maize production relative to traditional open-field farming. (C) 1998 Academic Press.
Resumo:
A version of the Agricultural Production Systems Simulator (APSIM) capable of simulating the key agronomic aspects of intercropping maize between legume shrub hedgerows was described and parameterised in the first paper of this series (Nelson et al., this issue). In this paper, APSIM is used to simulate maize yields and soil erosion from traditional open-field farming and hedgerow intercropping in the Philippine uplands. Two variants of open-field farming were simulated using APSIM, continuous and fallow, for comparison with intercropping maize between leguminous shrub hedgerows. Continuous open-field maize farming was predicted to be unsustainable in the long term, while fallow open-field farming was predicted to slow productivity decline by spreading the effect of erosion over a larger cropping area. Hedgerow intercropping was predicted to reduce erosion by maintaining soil surface cover during periods of intense rainfall, contributing to sustainable production of maize in the long term. In the third paper in this series, Nelson et al. (this issue) use cost-benefit analysis to compare the economic viability of hedgerow intercropping relative to traditional open-field farming of maize in relatively inaccessible upland areas. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Serious infestations of Helicoverpa punctigera are experienced yearly in the eastern cropping regions of Australia. Regression analysis was used to determine whether the size of the first generation in spring (G(1)), which is comprised mostly of immigrants from inland Australia, was related to monthly rainfall in inland winter breeding areas. Data from two long series of light-trap catches at Narrabri in New South Wales (NSW) and Turretfield in South Australia (SA) were used in the analyses. The size of G1 at Narrabri in each year was significantly regressed on the amount of rainfall in western Queensland and NSW in May and June. The size of G1 at Turretfield each year was significantly regressed on the amount of rain in May, June and July in western Queensland and NSW and also in the desert of central Western Australia. Low r(2) values of the regressions suggest that rainfall data for more sites, as well as biological and other physical factors, such as temperature, evaporation, and prevailing wind systems, may need to be included to improve forecasts of the potential magnitude of the infestations in coastal cropping regions.
Resumo:
Analysis of charred plant macro-remains, including wood charcoals, cereals, seeds, tubers and fruits from the Neolithic site of Catalhoyuk has indicated complex patterns of plant resource use and exploitation in the Konya plain during the early Holocene. Evidence presented in this paper shows that settlement location was not dictated by proximity to high quality arable land and direct access to arboreal resources (firewood, timber, fruit producing species). A summary of the patterns observed in sample composition and species representation is outlined here together with preliminary interpretations of these results within their broader regional context.
Resumo:
Dormancy release in seeds of Lolium rigidum Gaud. (annual ryegrass) was investigated in relation to temperature and seed water content. Freshly matured seeds were collected from cropping fields at Wongan Hills and Merredin, Western Australia. Seeds from Wongan Hills were equilibrated to water contents between 6 and 18% dry weight and after-ripened at constant temperatures between 9 and 50degreesC for up to 23 weeks. Wongan Hills and Merredin seeds at water contents between 7 and 17% were also after-ripened in full sun or shade conditions. Dormancy was tested at regular intervals during after-ripening by germinating seeds on agar at 12-h alternating 15degreesC (dark) and 25degreesC (light) periods. Rate of dormancy release for Wongan Hills seeds was a positive linear function of after-ripening temperature above a base temperature (T-b) of 5.4degreesC. A thermal after-ripening time model for dormancy loss accounting for seed moisture in the range 6-18% was developed using germination data for Wongan Hills seeds after-ripened at constant temperatures. The model accurately predicted dormancy release for Wongan Hills seeds after-ripened under naturally fluctuating temperatures. Seeds from Merredin responded similarly but had lower dormancy at collection and a faster rate of dormancy release in seeds below 9% water content.
Resumo:
Dormancy release was studied in four populations of annual ryegrass (Lolium rigidum) seeds to determine whether loss of dormancy in the field can be predicted from temperature alone or whether seed water content (WC) must also be considered. Freshly matured seeds were after-ripened at the northern and southern extremes of the Western Australian cereal cropping region and at constant 37degreesC. Seed WC was allowed to fluctuate with prevailing humidity, but full hydration was avoided by excluding rainfall. Dormancy was measured regularly during after-ripening by germinating seeds with 12-hourly light or in darkness. Germination was lower in darkness than in light/dark and dormancy release was slower when germination was tested in darkness. Seeds were consistently drier, and dormancy release was slower, during after-ripening at 37degreesC than under field conditions. However, within each population, the rate of dormancy release in the field (north and south) in terms of thermal time was unaffected by after-ripening site. While low seed WC slowed dormancy release in seeds held at 37degreesC, dormancy release in seeds after-ripened under Western Australian field conditions was adequately described by thermal after-ripening time, without the need to account for changes in WC elicited by fluctuating environmental humidity.
Resumo:
The role of temperature and rainfall during seed development in modulating subsequent seed dormancy status was studied for Lolium rigidum Gaud. (annual ryegrass). Climatic parameters relating to geographic origin were compared with annual ryegrass seed dormancy characteristics for seeds collected from 12 sites across the southern Western Australian cropping region. Seed germination was tested soon after collection and periodically during subsequent after-ripening. Temperature in the year of seed development and long-term rainfall patterns showed correlations with aspects of seed dormancy, particularly the proportion of seeds remaining dormant following 5 months of after-ripening. Consequently, for one population the temperature (warm/cool) and water supply (adequate/reduced) during seed development were manipulated to investigate the role of maternal environment in the quantity and dormancy characteristics of seeds produced. Seeds from plants grown at warm temperatures were fewer in number, weighed less, and were less dormant than those from plants grown at cool temperature. Seeds that developed under both cool temperature and reduced moisture conditions lost dormancy faster than seeds from well-watered plants. Seed maturation environment, particularly temperature, can have a significant effect on annual ryegrass seed numbers and seed dormancy characteristics.
Resumo:
Soil erosion in the Philippine uplands is severe. Hedgerow intercropping is widely advocated as an effective means of controlling soil erosion from annual cropping systems in the uplands. However, few farmers adopt hedgerow intercropping even in areas where it has been vigorously promoted. This may be because farmers find hedgerow intercropping to be uneconomic compared to traditional methods of farming. This paper reports a cost-benefit analysis comparing the economic returns from traditional maize farming with those from hedgerow intercropping in an upland community with no past adoption of hedgerows. A simple erosion/productivity model, Soil Changes Under Agroforestry (SCUAF), is used to predict maize yields over 25 years. Economic data were collected through key informant surveys with experienced maize farmers in an upland community. Traditional methods of open-field farming of maize are economically attractive to farmers in the Philippine uplands. In the short term, establishment costs are a major disincentive to the adoption of hedgerow intercropping. In the long term, higher economic returns from hedgerow intercropping compared to open-field farming are realised, but these lie beyond farmers' limited planning horizons.
Resumo:
This study investigates the effect of cash cropping on food availability and examines the determinants of the proportion of income allocated for food expenditures in the Nyeri district in Kenya. Using a Tobit model, the results suggest that in general food expenditure allocations suffer due to cash cropping in Kenya as the lump-sum income flows from this may be used for purchases other than food. Food expenditure also suffers when remittances are irregular. On the other hand, earnings from outside employment for married women living with husbands are positively associated with food expenditure allocations. Amounts of non-cash food output as well as ownership of livestock are negatively associated with food expenditure allocations. These findings indicate that lump sum income may not lead to improved welfare of women and children. Thus, there may be social reasons for increasing non-cash food production especially by women, instead of over emphasizing cash cropping as now seems to be so in public policy.
Resumo:
This article examines the effects of agricultural commercialization and other factors on per capita food availability by means of a case study in the Nyeri district in Kenya. It was found that cash cropping has a negative influence on per capita food availability in the male-headed households. This negative influence is not apparent in the female-headed households and in fact, per capita food availability rises with increased agricultural commercialization. Households of married women seem to suffer more in terms of reduced food availability than households headed by females. Husbands have control over cash income and therefore influence food purchases. They are less likely than females to use the cash for food purchases and tend to spend the cash on themselves, thus reducing food availability to family members. This suggests that in some patriarchal societies, caution should be displayed in encouraging cash cropping especially in male-headed households. Cash cropping under such circumstances is unwise from both a food availability and food security point of view because it can result in reduced crop diversification hence increasing the risks of income food deficits for families. Other factors found to have an influence on per capita food availability are employment of the women outside households, educational level of the women and the quality of land.
Resumo:
A field experiment compared two rice (Oryza sativa L.) cropping systems: paddy or raised beds with continuous furrow irrigation; and trialled four cultivars: Starbonnet, Lemont, Amaroo and Ceysvoni, and one test line YRL39; that may vary in adaptation to growth on raised beds. The grain yield of rice ranged from 740 to 1250 g/m(2) and was slightly greater in paddy than on raised beds. Although there were early growth responses to fertilizer nitrogen on raised beds, the crop nitrogen content at maturity mostly exceeded 20 g/m(2) in both systems, so nitrogen was unlikely to have limited yield. Ceysvoni yielded best in both systems, a result of good post-anthesis growth and larger grain size, although its whole-grain mill-out percentage was poor relative to the other cultivars. Starbonnet and Lemont yielded poorly on raised beds, associated with too few tillers and too much leaf area. When grown on raised beds all cultivars experienced a delay in anthesis resulting in more tillers, leaf area and dry weight at anthesis, and probably a greater yield potential. The growth of rice after anthesis, however, was similar on raised beds and in paddy, so reductions in harvest index and grain size on raised beds were recorded. The data indicated that water supply was not a major limitation to rice growth on raised beds, but slower crop development was an issue that would affect the use of raised beds in a cropping system, especially in rice-growing areas where temperatures are too cool for optimal crop development. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The magnitude of genotype-by-management (G x M) interactions for grain yield and grain protein concentration was examined in a multi-environment trial (MET) involving a diverse set of 272 advanced breeding lines from the Queensland wheat breeding program. The MET was structured as a series of management-regimes imposed at 3 sites for 2 years. The management-regimes were generated at each site-year as separate trials in which planting time, N fertiliser application rate, cropping history, and irrigation were manipulated. irrigation was used to simulate different rainfall regimes. From the combined analysis of variance, the G x M interaction variance components were found to be the largest source of G x E interaction variation for both grain yield (0.117 +/- 0.005 t(2) ha(-2); 49% of total G x E 0.238 +/- 0.028 t(2) ha(-2)) and grain protein concentration (0.445 +/- 0.020%(2); 82% of total G x E 0.546 +/- 0.057%(2)), and in both cases this source of variation was larger than the genotypic variance component (grain yield 0.068 +/- 0.014 t(2) ha(-2) and grain protein 0.203 +/- 0.026%(2)). The genotypic correlation between the traits varied considerably with management-regime, ranging from -0.98 to -0.31, with an estimate of 0.0 for one trial. Pattern analysis identified advanced breeding lines with improved grain yield and grain protein concentration relative to the cultivars Hartog, Sunco and Meteor. It is likely that a large component of the previously documented G x E interactions for grain yield of wheat in the northern grains region are in part a result of G x M interactions. The implications of the strong influence of G x M interactions for the conduct of wheat breeding METs in the northern region are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
While riparian vegetation can play a major role in protecting land, water and natural habitat in catchments, there are high costs associated with tree planting and establishment and in diverting land from cropping. The distribution of costs and benefits of riparian revegetation creates conflicts in the objectives of various stakeholder groups. Multicriteria analysis provides an appropriate tool to evaluate alternative riparian revegetation options, and to accommodate the conflicting views of various stakeholder groups. This paper discusses an application of multicriteria analysis in an evaluation of riparian revegetation policy options for Scheu Creek, a small sub-catchment in the Johnstone River catchment in north Queensland, Australia. Clear differences are found in the rankings of revegetation options for different stakeholder groups with respect to environmental, social and economic impacts. Implementation of a revegetation option will involve considerable cost for landholders for the benefits of society. Queensland legislation does not provide a means to require farmers to implement riparian revegetation, hence the need for subsidies, tau incentives and moral suasion. (C) 2001 Academic Press.
Resumo:
A field study was carried out to investigate the impacts of windrowed harvesting residues on denitrification, immobilisation and leaching of N-15-labelled nitrate applied at 20 kg N ha(-1) to microplots in second-rotation hoop pine (Araucaria cunninghamii) plantations of 1-3 years old in southeast Queensland, Australia. The PVC microplots were 235 mm in diameter and 150 mm. long, and driven into the 100 mm soil. There were three replications of such microplots for each of the six treatments which were areas just under and between 1-, 2- and 3-year-old windrows of harvesting residues. Based on gaseous N losses estimated by the difference between the recoveries of bromide (Br) applied at 100 kg Br ha(-1) and N-15-labelled nitrate, denitrification was highest (23% based on N-15 loss) in the areas just under the 1-year-old windrows 25 days after a simulated 75 mm rainfall and following several natural rainfall events. There was no significant difference in N-15 losses (14-17%) among the other treatments. The N-15 immobilisation rate was highest for microplots in the areas between the 1-year-old windrows and generally higher for microplots in the areas just under the windrows (30-39%) than that (26-30%) between the windrows. Direct measurement of N-15 gas emissions (N-15(2) + (N2O)-N-15) confirmed that the highest denitrification rate occurred in the microplots under the 1-year-old windrows although the gaseous N-15 loss calculated by gas emission was only about one-quarter that estimated by the N-15 mass balance method. A significant, positive linear relationship (P < 0.05) existed between the gaseous N-15 losses measured by the two methods used. The research indicates that considerable mineral N could be lost via denitrification during the critical inter-rotation period and early phase of the second rotation. However, the impacts of windrowed harvesting residues on N losses via denitrification might only last for a period of about 2 years. Published by Elsevier Science B.V.
Resumo:
Wheel traffic can lead to compaction and degradation of soil physical properties. This study, as part of a study of controlled traffic farming, assessed the impact of compaction from wheel traffic on soil that had not been trafficked for 5 years. A tractor of 40 kN rear axle weight was used to apply traffic at varying wheelslip on a clay soil with varying residue cover to simulate effects of traffic typical of grain production operations in the northern Australian grain belt. A rainfall simulator was used to determine infiltration characteristics. Wheel traffic significantly reduced time to ponding, steady infiltration rate, and total infiltration compared with non-wheeled soil, with or without residue cover. Non-wheeled soil had 4-5 times greater steady infiltration rate than wheeled soil, irrespective of residue cover. Wheelslip greater than 10% further reduced steady infiltration rate and total infiltration compared with that measured for self-propulsion wheeling (3% wheelslip) under residue-protected conditions. Where there was no compaction from wheel traffic, residue cover had a greater effect on infiltration capacity, with steady infiltration rate increasing proportionally with residue cover (R-2 = 0.98). Residue cover, however, had much less effect on infiltration when wheeling was imposed. These results demonstrated that the infiltration rate for the non-wheeled soil under a controlled traffic zero-till system was similar to that of virgin soil. However, when the soil was wheeled by a medium tractor wheel, infiltration rate was reduced to that of long-term cropped soil. These results suggest that wheel traffic, rather than tillage and cropping, might be the major factor governing infiltration. The exclusion of wheel traffic under a controlled traffic farming system, combined with conservation tillage, provides a way to enhance the sustainability of cropping this soil for improved infiltration, increased plant-available water, and reduced runoff-driven soil erosion.