72 resultados para affective computing
Resumo:
Background: Previous research into age of onset in affective disorders has produced conflicting results. This paper examines the influence of heterogeneity on the age-at-first-registration distribution for the ICD-9 diagnostic group 'affective psychosis'. Method: For 1979-1991, data for age-at-first-registration for 4985 individuals diagnosed with affective psychosis (ICD-9 296.x) were extracted from a name-linked mental health register. These data were divided into (i) '296.1 only', a category used to code unipolar depression (males = 700; females = 1321); and (ii) '296 other', all 296 cases other than 296.1 (males = 1280; females = 1684). Inception rates for each 5-year age division were adjusted for the background population age-structure as a rate per 100 000 population. Results: The age-at-first-registration distribution for affective psychosis has a wide age range, with women outnumbering men. There is a near-linear increase in inception rates for both men and women with 296.1 only, while the bulk of those with affective psychoses (296 other) have an inverted U-shaped age distribution. Males have an earlier modal age-at-first-registration for 296 other compared to females. Conclusion: The heterogeneity in terms of subtypes and sex in affective psychosis clouds the interpretation of age-at-first-registration. Separating those with unipolar psychotic depression from other subclassifications and differentiating by sex may provide clues to factors that precipitate the onset of affective psychosis.
Resumo:
It is proposed that games, which are designed to generate positive affect, are most successful when they facilitate flow (Csikszentmihalyi 1992). Flow is a state of concentration, deep enjoyment, and total absorption in an activity. The study of games, and a resulting understanding of flow in games can inform the design of non-leisure software for positive affect. The paper considers the ways in which computer games contravene Nielsen's guidelines for heuristic evaluation ( Nielsen and Molich 1990) and how these contraventions impact on flow. The paper also explores the implications for research that stem from the differences between games played on a personal computer and games played on a dedicated console. This research takes important initial steps towards de. ning how flow in computer games can inform affective design.
Resumo:
A variety of current and future wired and wireless networking technologies can be transformed into a seamless communication environments through application of context-based vertical handovers. Such seamless communication environments are needed for future pervasive/ubiquitous systems. Pervasive systems are context aware and need to adapt to context changes, including network disconnections and changes in network Quality of Service (QoS). Vertical handover is one of many possible adaptation methods. It allows users to roam freely between heterogeneous networks while maintaining the continuity of their applications. This paper proposes a vertical handover mechanism suitable for multimedia applications in pervasive systems. The paper focuses on the handover decision making process which uses context information regarding user devices, user location, network environment and requested QoS. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel ( 2001, Phys. Rev. Letts., 86, 5188) can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM ( 2001, Nature, 409, 46) do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.
Resumo:
Solid-state quantum computer architectures with qubits encoded using single atoms are now feasible given recent advances in the atomic doping of semiconductors. Here we present a charge qubit consisting of two dopant atoms in a semiconductor crystal, one of which is singly ionized. Surface electrodes control the qubit and a radio-frequency single-electron transistor provides fast readout. The calculated single gate times, of order 50 ps or less, are much shorter than the expected decoherence time. We propose universal one- and two-qubit gate operations for this system and discuss prospects for fabrication and scale up.
Resumo:
A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we explore the possibility of fundamental tests for coherent-state optical quantum computing gates [ T. C. Ralph et al. Phys. Rev. A 68 042319 (2003)] using sophisticated but not unrealistic quantum states. The major resource required in these gates is a state diagonal to the basis states. We use the recent observation that a squeezed single-photon state [S(r)∣1⟩] approximates well an odd superposition of coherent states (∣α⟩−∣−α⟩) to address the diagonal resource problem. The approximation only holds for relatively small α, and hence these gates cannot be used in a scalable scheme. We explore the effects on fidelities and probabilities in teleportation and a rotated Hadamard gate.
Resumo:
Typically linear optical quantum computing (LOQC) models assume that all input photons are completely indistinguishable. In practice there will inevitably be nonidealities associated with the photons and the experimental setup which will introduce a degree of distinguishability between photons. We consider a nondeterministic optical controlled-NOT gate, a fundamental LOQC gate, and examine the effect of temporal and spectral distinguishability on its operation. We also consider the effect of utilizing nonideal photon counters, which have finite bandwidth and time response.
Resumo:
We propose a scheme for quantum information processing based on donor electron spins in semiconductors, with an architecture complementary to the original Kane proposal. We show that a naive implementation of electron spin qubits provides only modest improvement over the Kane scheme, however through the introduction of global gate control we are able to take full advantage of the fast electron evolution timescales. We estimate that the latent clock speed is 100-1000 times that of the nuclear spin quantum computer with the ratio T-2/T-ops approaching the 10(6) level.
Resumo:
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.
Resumo:
Primary objective: To examine changes in the relationship between intonation, voice range and mood following music therapy programmes in people with traumatic brain injury. Research design: Data from four case studies were pooled and effect size, ANOVA and correlation calculations were performed to evaluate the effectiveness of treatment. Methods and procedures: Subjects sang three self-selected songs for 15 sessions. Speaking fundamental frequency, fundamental frequency variability, slope, voice range and mood were analysed pre- and post-session. Results: Immediate treatment effects were not found. Long-term improvements in affective intonation were found in three subjects, especially in fundamental frequency. Voice range improved over time and was positively correlated with the three intonation components. Mood scale data showed that immediate effects were in the negative direction whereas there weres increases in positive mood state in the longer-term. Conclusions: Findings suggest that, in the long-term, song singing can improve vocal range and mood and enhance the affective intonation styles of people with TBI.
Resumo:
Two experiments examined blink modulation during viewing of pleasant, neutral and unpleasant picture stimuli in non-selected adults (N = 21) and children (N = 60) and children with anxiety disorders (N = 12). Blink reflexes were elicited by a white noise probe of 105 dB at lead stimulus intervals of 60, 240, 3500, and 5000 ms and during intertrial intervals. Blink modulation during unpleasant pictures was significantly different from blink modulation during neutral pictures at the 60 ms lead interval in children whereas adults showed no significant differences. Picture content had no differential effect on the extent of blink modulation for adults or children at the 240 ms lead interval. At the long lead intervals, blink modulation during unpleasant and pleasant pictures was significantly larger than during neutral pictures in adults. Picture valence did not differentially affect the extent of blink modulation at long lead intervals in children. Comparing the extent of blink modulation in anxious and non-selected children, blinks were significantly modulated during unpleasant pictures at the 60 ms lead interval for both groups. However, the extent of blink modulation was larger overall at this very short lead interval in anxious children. Children did not differ at other lead intervals. (C) 2004 Elsevier B.V. All rights reserved.