50 resultados para a posteriori error estimation
Resumo:
Activated sludge models are used extensively in the study of wastewater treatment processes. While various commercial implementations of these models are available, there are many people who need to code models themselves using the simulation packages available to them, Quality assurance of such models is difficult. While benchmarking problems have been developed and are available, the comparison of simulation data with that of commercial models leads only to the detection, not the isolation of errors. To identify the errors in the code is time-consuming. In this paper, we address the problem by developing a systematic and largely automated approach to the isolation of coding errors. There are three steps: firstly, possible errors are classified according to their place in the model structure and a feature matrix is established for each class of errors. Secondly, an observer is designed to generate residuals, such that each class of errors imposes a subspace, spanned by its feature matrix, on the residuals. Finally. localising the residuals in a subspace isolates coding errors. The algorithm proved capable of rapidly and reliably isolating a variety of single and simultaneous errors in a case study using the ASM 1 activated sludge model. In this paper a newly coded model was verified against a known implementation. The method is also applicable to simultaneous verification of any two independent implementations, hence is useful in commercial model development.
Resumo:
The phase estimation algorithm is so named because it allows an estimation of the eigenvalues associated with an operator. However, it has been proposed that the algorithm can also be used to generate eigenstates. Here we extend this proposal for small quantum systems, identifying the conditions under which the phase-estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and one in which it does not.
Resumo:
In population pharmacokinetic studies, the precision of parameter estimates is dependent on the population design. Methods based on the Fisher information matrix have been developed and extended to population studies to evaluate and optimize designs. In this paper we propose simple programming tools to evaluate population pharmacokinetic designs. This involved the development of an expression for the Fisher information matrix for nonlinear mixed-effects models, including estimation of the variance of the residual error. We implemented this expression as a generic function for two software applications: S-PLUS and MATLAB. The evaluation of population designs based on two pharmacokinetic examples from the literature is shown to illustrate the efficiency and the simplicity of this theoretic approach. Although no optimization method of the design is provided, these functions can be used to select and compare population designs among a large set of possible designs, avoiding a lot of simulations.
Resumo:
We derive optimal N-photon two-mode input states for interferometric phase measurements. Under canonical measurements the phase variance scales as N-2 for these states, as compared to N-1 or N-1/2 for states considered bq previous authors. We prove, that it is not possible to realize the canonical measurement by counting photons in the outputs of the interferometer, even if an adjustable auxiliary phase shift is allowed in the interferometer. However. we introduce a feedback algorithm based on Bayesian inference to control this auxiliary phase shift. This makes the measurement close to a canonical one, with a phase variance scaling slightly above N-2. With no feedback, the best result (given that the phase to be measured is completely unknown) is a scaling of N-1. For optimal input states having up to four photons, our feedback scheme is the best possible one, but for higher photon numbers more complicated schemes perform marginally better.
Resumo:
Binning and truncation of data are common in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (Biometrics, 44: 2, 571-578, 1988) for the univariate case is generalized to multivariate measurements. The multivariate solution requires the evaluation of multidimensional integrals over each bin at each iteration of the EM procedure. Naive implementation of the procedure can lead to computationally inefficient results. To reduce the computational cost a number of straightforward numerical techniques are proposed. Results on simulated data indicate that the proposed methods can achieve significant computational gains with no loss in the accuracy of the final parameter estimates. Furthermore, experimental results suggest that with a sufficient number of bins and data points it is possible to estimate the true underlying density almost as well as if the data were not binned. The paper concludes with a brief description of an application of this approach to diagnosis of iron deficiency anemia, in the context of binned and truncated bivariate measurements of volume and hemoglobin concentration from an individual's red blood cells.
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
Objectives: To compare the population modelling programs NONMEM and P-PHARM during investigation of the pharmacokinetics of tacrolimus in paediatric liver-transplant recipients. Methods: Population pharmacokinetic analysis was performed using NONMEM and P-PHARM on retrospective data from 35 paediatric liver-transplant patients receiving tacrolimus therapy. The same data were presented to both programs. Maximum likelihood estimates were sought for apparent clearance (CL/F) and apparent volume of distribution (V/F). Covariates screened for influence on these parameters were weight, age, gender, post-operative day, days of tacrolimus therapy, transplant type, biliary reconstructive procedure, liver function tests, creatinine clearance, haematocrit, corticosteroid dose, and potential interacting drugs. Results: A satisfactory model was developed in both programs with a single categorical covariate - transplant type - providing stable parameter estimates and small, normally distributed (weighted) residuals. In NONMEM, the continuous covariates - age and liver function tests - improved modelling further. Mean parameter estimates were CL/F (whole liver) = 16.3 1/h, CL/F (cut-down liver) = 8.5 1/h and V/F = 565 1 in NONMEM, and CL/F = 8.3 1/h and V/F = 155 1 in P-PHARM. Individual Bayesian parameter estimates were CL/F (whole liver) = 17.9 +/- 8.8 1/h, CL/F (cutdown liver) = 11.6 +/- 18.8 1/h and V/F = 712 792 1 in NONMEM, and CL/F (whole liver) = 12.8 +/- 3.5 1/h, CL/F (cut-down liver) = 8.2 +/- 3.4 1/h and V/F = 221 1641 in P-PHARM. Marked interindividual kinetic variability (38-108%) and residual random error (approximately 3 ng/ml) were observed. P-PHARM was more user friendly and readily provided informative graphical presentation of results. NONMEM allowed a wider choice of errors for statistical modelling and coped better with complex covariate data sets. Conclusion: Results from parametric modelling programs can vary due to different algorithms employed to estimate parameters, alternative methods of covariate analysis and variations and limitations in the software itself.
Resumo:
Introduction Bioelectrical impedance analysis (BIA) is a useful field measure to estimate total body water (TBW). No prediction formulae have been developed or validated against a reference method in patients with pancreatic cancer. The aim of this study was to assess the agreement between three prediction equations for the estimation of TBW in cachectic patients with pancreatic cancer. Methods Resistance was measured at frequencies of 50 and 200 kHz in 18 outpatients (10 males and eight females, age 70.2 +/- 11.8 years) with pancreatic cancer from two tertiary Australian hospitals. Three published prediction formulae were used to calculate TBW - TBWs developed in surgical patients, TBWca-uw and TBWca-nw developed in underweight and normal weight patients with end-stage cancer. Results There was no significant difference in the TBW estimated by the three prediction equations - TBWs 32.9 +/- 8.3 L, TBWca-nw 36.3 +/- 7.4 L, TBWca-uw 34.6 +/- 7.6 L. At a population level, there is agreement between prediction of TBW in patients with pancreatic cancer estimated from the three equations. The best combination of low bias and narrow limits of agreement was observed when TBW was estimated from the equation developed in the underweight cancer patients relative to the normal weight cancer patients. When no established BIA prediction equation exists, practitioners should utilize an equation developed in a population with similar critical characteristics such as diagnosis, weight loss, body mass index and/or age. Conclusions Further research is required to determine the accuracy of the BIA prediction technique against a reference method in patients with pancreatic cancer.