150 resultados para Zero sequence current
Resumo:
Background: The ornamental tobacco Nicotiana alata produces a series of proteinase inhibitors (Pls) that are derived from a 43 kDa precursor protein, NaProPl. NaProPl contains six highly homologous repeats that fold to generate six separate structural domains, each corresponding to one of the native Pls. An unusual feature of NaProPl is that the structural domains lie across adjacent repeats and that the sixth Pl domain is generated from fragments of the first and sixth repeats. Although the homology of the repeats suggests that they may have arisen from gene duplication, the observed folding does not appear to support this. This study of the solution structure of a single NaProPl repeat (aPl1) forms a basis for unravelling the mechanism by which this protein may have evolved, Results: The three-dimensional structure of aPl1 closely resembles the triple-stranded antiparallel beta sheet observed in each of the native Pls. The five-residue sequence Glu-Glu-Lys-Lys-Asn, which forms the linker between the six structural domains in NaProPl, exists as a disordered loop in aPl1. The presence of this loop in aPl1 results in a loss of the characteristically flat and disc-like topography of the native inhibitors. Conclusions: A single repeat from NaProPl is capable of folding into a compact globular domain that displays native-like Pl activity. Consequently, it is possible that a similar single-domain inhibitor represents the ancestral protein from which NaProPl evolved.
Resumo:
Conventionally, protein structure prediction via threading relies on some nonoptimal method to align a protein sequence to each member of a library of known structures. We show how a score function (force field) can be modified so as to allow the direct application of a dynamic programming algorithm to the problem. This involves an approximation whose damage can be minimized by an optimization process during score function parameter determination. The method is compared to sequence to structure alignments using a more conventional pair-wise score function and the frozen approximation. The new method produces results comparable to the frozen approximation, but is faster and has fewer adjustable parameters. It is also free of memory of the template's original amino acid sequence, and does not suffer from a problem of nonconvergence, which can be shown to occur with the frozen approximation. Alignments generated by the simplified score function can then be ranked using a second score function with the approximations removed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Gaussian laser pulses. We show that the classical system exhibits: diffusive growth in the energy, or heating,'' while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focused laser pulses into the trap.
Resumo:
We use a quantum master equation to describe transport in double-dot devices. The coherent dot-to-dot coupling affects the noise spectra strongly. For phonon-assisted tunneling, the calculated current spectra are consistent with those of experiments. The model shows that quantum stochastic theory may he applied to some advantage in mesoscopic electronic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Fluorescence in situ hybridization of a tile path of DNA subclones has previously enabled the cytogenetic definition of the minimal DNA sequence which spans the FRA16D common chromosomal fragile site, located at 16q23.2. Homozygous deletion of the FRA16D locus has been reported in adenocarcinomas of stomach, colon, lung and ovary. We have sequenced the 270 kb containing the FRA16D fragile site and the minimal homozygously deleted region in tumour cells. This sequence enabled localization of some of the tumour cell breakpoints to regions which contain AT-rich secondary structures similar to those associated with the FRA10B and FRA16B rare fragile sites. The FRA16D DNA sequence also led to the identification of an alternatively spliced gene, named FOR (fragile site FRA16D oxidoreductase), exons of which span both the fragile site and the minimal region of homozygous deletion. In addition, the complete DNA sequence of the FRA16D-containing FOR intron reveals no evidence of additional authentic transcripts. Alternatively spliced FOR transcripts (FOR I, FOR II and FOR III) encode proteins which share N-terminal WW domains and differ at their C-terminus, with FOR III having a truncated oxidoreductase domain. FRA16D-associated deletions selectively affect the FOR gene transcripts. Three out of five previously mapped translocation breakpoints in multiple myeloma are also located within the FOR gene. FOR is therefore the principle genetic target for DNA instability at 16q23.2 and perturbation of FOR function is likely to contribute to the biological consequences of DNA instability at FRA16D in cancer cells.
Resumo:
Abstract not available
Resumo:
Two small RNAs regulate the timing of Caenorhabditis elegans development(1,2). Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA(1,3,4), and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA 2. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs1,2,5,6. Here we have detected let-7 RNAs of similar to 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.
Resumo:
Despite the widespread use of psychological debriefing, serious concerns have been raised about its effectiveness and potential to do harm. 1 2 Psychological debriefing is broadly defined as a set of procedures including counselling and the giving of information aimed at preventing psychological morbidity and aiding recovery after a traumatic event. In 1995 Raphael and colleagues emphasised that there was an urgent need for reliable evidence from randomised controlled trials on the impact and worth of debriefing.3 Unfortunately, the news has not been good for debriefing. Debriefing is generally applied within the first few days after a traumatic event, lasts one to three hours, and usually includes procedures that encourage and normalise emotional expression. Debriefing can also be more narrowly defined in terms of the procedures used, the information provided and the target population. One example of this type of debriefing is known as critical incident stress debriefing.4
Resumo:
omega -Conotoxins selective for N-type calcium channels are useful in the management of severe pain. In an attempt to expand the therapeutic potential of this class, four new omega -conotoxins (CVIA-D) have been discovered in the venom of the piscivorous cone snail, Conus catus, using assay-guided fractionation and gene cloning. Compared with other omega -conotoxins, CVID has a novel loop 4 sequence and the highest selectivity for N-type over P/Q-type calcium channels in radioligand binding assays. CVIA-D also inhibited contractions of electrically stimulated rat vas deferens. In electrophysiological studies, omega -conotoxins CVID and MVIIA had similar potencies to inhibit current through central (alpha (1B-d)) and peripheral (alpha (1B-b)) splice variants of the rat N-type calcium channels when coexpressed with rat beta (3) in Xenopus oocytes, However, the potency of CVID and MVIIA increased when alpha (1B-d) and alpha (1B-b) were expressed in the absence of rat beta (3), an effect most pronounced for CVID at alpha (1B-d) (up to 540-fold) and least pronounced for MVIIA at alpha (1B-d) (3-fold). The novel selectivity of CVID may have therapeutic implications. H-1 NMR studies reveal that CMD possesses a combination of unique structural features, including two hydrogen bonds that stabilize loop 2 and place loop 2 proximal to loop 4, creating a globular surface that is rigid and well defined.
Resumo:
The majority of past and current individual-tree growth modelling methodologies have failed to characterise and incorporate structured stochastic components. Rather, they have relied on deterministic predictions or have added an unstructured random component to predictions. In particular, spatial stochastic structure has been neglected, despite being present in most applications of individual-tree growth models. Spatial stochastic structure (also called spatial dependence or spatial autocorrelation) eventuates when spatial influences such as competition and micro-site effects are not fully captured in models. Temporal stochastic structure (also called temporal dependence or temporal autocorrelation) eventuates when a sequence of measurements is taken on an individual-tree over time, and variables explaining temporal variation in these measurements are not included in the model. Nested stochastic structure eventuates when measurements are combined across sampling units and differences among the sampling units are not fully captured in the model. This review examines spatial, temporal, and nested stochastic structure and instances where each has been characterised in the forest biometry and statistical literature. Methodologies for incorporating stochastic structure in growth model estimation and prediction are described. Benefits from incorporation of stochastic structure include valid statistical inference, improved estimation efficiency, and more realistic and theoretically sound predictions. It is proposed in this review that individual-tree modelling methodologies need to characterise and include structured stochasticity. Possibilities for future research are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Endoparasitoid wasps produce maternal protein secretions, which are transported into the body of insect hosts at oviposition to regulate host physiology for successful development of their offspring. Venturia canescens calyx fluid contains so-called virus-like particles (VLPs) that are essential for immune evasion of the developing parasitoid inside the host. VLPs consist of four major proteins. In this paper, we describe the isolation and molecular cloning of a gene (vlp2) that is a constituent of VLPs and discuss its possible role in VLP structure and function.
Resumo:
Surge flow phenomena. e.g.. as a consequence of a dam failure or a flash flood, represent free boundary problems. ne extending computational domain together with the discontinuities involved renders their numerical solution a cumbersome procedure. This contribution proposes an analytical solution to the problem, It is based on the slightly modified zero-inertia (ZI) differential equations for nonprismatic channels and uses exclusively physical parameters. Employing the concept of a momentum-representative cross section of the moving water body together with a specific relationship for describing the cross sectional geometry leads, after considerable mathematical calculus. to the analytical solution. The hydrodynamic analytical model is free of numerical troubles, easy to run, computationally efficient. and fully satisfies the law of volume conservation. In a first test series, the hydrodynamic analytical ZI model compares very favorably with a full hydrodynamic numerical model in respect to published results of surge flow simulations in different types of prismatic channels. In order to extend these considerations to natural rivers, the accuracy of the analytical model in describing an irregular cross section is investigated and tested successfully. A sensitivity and error analysis reveals the important impact of the hydraulic radius on the velocity of the surge, and this underlines the importance of an adequate description of the topography, The new approach is finally applied to simulate a surge propagating down the irregularly shaped Isar Valley in the Bavarian Alps after a hypothetical dam failure. The straightforward and fully stable computation of the flood hydrograph along the Isar Valley clearly reflects the impact of the strongly varying topographic characteristics on the How phenomenon. Apart from treating surge flow phenomena as a whole, the analytical solution also offers a rigorous alternative to both (a) the approximate Whitham solution, for generating initial values, and (b) the rough volume balance techniques used to model the wave tip in numerical surge flow computations.