54 resultados para Yukon Valley
Resumo:
The differences in spectral shape resolution abilities among cochlear implant ~CI! listeners, and between CI and normal-hearing ~NH! listeners, when listening with the same number of channels ~12!, was investigated. In addition, the effect of the number of channels on spectral shape resolution was examined. The stimuli were rippled noise signals with various ripple frequency-spacings. An adaptive 4IFC procedure was used to determine the threshold for resolvable ripple spacing, which was the spacing at which an interchange in peak and valley positions could be discriminated. The results showed poorer spectral shape resolution in CI compared to NH listeners ~average thresholds of approximately 3000 and 400 Hz, respectively!, and wide variability among CI listeners ~range of approximately 800 to 8000 Hz!. There was a significant relationship between spectral shape resolution and vowel recognition. The spectral shape resolution thresholds of NH listeners increased as the number of channels increased from 1 to 16, while the CI listeners showed a performance plateau at 4–6 channels, which is consistent with previous results using speech recognition measures. These results indicate that this test may provide a measure of CI performance which is time efficient and non-linguistic, and therefore, if verified, may provide a useful contribution to the prediction of speech perception in adults and children who use CIs.
Resumo:
Leon Battista Alberti, 'On the Art of Building in Ten Books' Translated by Joseph Rykwert, Neil Leach and Robert Tavemor L. A. Zhadova (ed.), 'Tatlin' (Budapest 1984). English translation Helen Ross, 'Just For Living, Aboriginal Perceptions of Housing in North West Australia' Tony Fry, 'Design History Australia: A Source Text in Methods and Resources' Phillip Cox and David Moore, 'The Australian Functional Tradition' Lenore Coltheart and Don Fraser (eds.), 'Lamdmarks in Public Works, Engineers and Their Works in New South Wales 1884-1914' Peter Bridges and Don MacDonald, 'James Barnet, Colonial Architect' Don Watson and Judith McKay, 'A Directory of Queensland Architects to 1940' Russell Walden, 'Voices of Silence: New Zealand's Chapel of Futuna' Jeremy Salmond, 'Old New Zealand Houses 1800-1940' Victoria Middleton, 'The Legend of Green Valley' Dyranda Prevost and Ann Rado, 'Living Places' Mark Jackson and Mark Stiles (directors), 'Universal Provider' Lars Lerup, 'Planned Assaults'
Resumo:
Recent El Nino events have stimulated interest in the development of modeling techniques to forecast extremes of climate and related health events. Previous studies have documented associations between specific climate variables (particularly temperature and rainfall) and outbreaks of arboviral disease. In some countries, such diseases are sensitive to Fl Nino. Here we describe a climate-based model for the prediction of Ross River virus epidemics in Australia. From a literature search and data on case notifications, we determined in which years there were epidemics of Ross River virus in southern Australia between 1928 and 1998. Predictor variables were monthly Southern Oscillation index values for the year of an epidemic or lagged by 1 year. We found that in southeastern states, epidemic years were well predicted by monthly Southern Oscillation index values in January and September in the previous year. The model forecasts that there is a high probability of epidemic Ross River virus in the southern states of Australia in 1999. We conclude that epidemics of arboviral disease can, at least in principle, be predicted on the basis of climate relationships.
Resumo:
Regression analyses of a long series of light-trap catches at Narrabri, Australia, were used to describe the seasonal dynamics of Helicoverpa armigera (Hubner). The size of the second generation was significantly related to the size of the first generation, to winter rainfall, which had a positive effect, and to spring rainfall which had a negative effect. These variables accounted for up to 96% of the variation in size of the second generation from year to year. Rainfall and crop hosts were also important for the size of the third generation. The area and tonnage of many potential host crops were significantly correlated with winter rain. When winter rain was omitted from the analysis, the sizes of both the second and third generations could be expressed as a function of the size of the previous generation and of the areas planted to lucerne, sorghum and maize. Lucerne and maize always had positive coefficients and sorghum a negative one. We extended our analysis to catches of H. punctigera (Wallengren), which declines in abundance after the second generation. Winter rain had a positive effect on the sizes of the second and third generations, and rain in spring or early summer had a negative effect. Only the area grown to lucerne had a positive effect on abundance. Forecasts of pest levels from a few months to a few weeks in advance are discussed, along with the improved understanding of the seasonal dynamics of both species and the significance of crops in the management of insecticide resistance for H. armigera.
Resumo:
Surge flow phenomena. e.g.. as a consequence of a dam failure or a flash flood, represent free boundary problems. ne extending computational domain together with the discontinuities involved renders their numerical solution a cumbersome procedure. This contribution proposes an analytical solution to the problem, It is based on the slightly modified zero-inertia (ZI) differential equations for nonprismatic channels and uses exclusively physical parameters. Employing the concept of a momentum-representative cross section of the moving water body together with a specific relationship for describing the cross sectional geometry leads, after considerable mathematical calculus. to the analytical solution. The hydrodynamic analytical model is free of numerical troubles, easy to run, computationally efficient. and fully satisfies the law of volume conservation. In a first test series, the hydrodynamic analytical ZI model compares very favorably with a full hydrodynamic numerical model in respect to published results of surge flow simulations in different types of prismatic channels. In order to extend these considerations to natural rivers, the accuracy of the analytical model in describing an irregular cross section is investigated and tested successfully. A sensitivity and error analysis reveals the important impact of the hydraulic radius on the velocity of the surge, and this underlines the importance of an adequate description of the topography, The new approach is finally applied to simulate a surge propagating down the irregularly shaped Isar Valley in the Bavarian Alps after a hypothetical dam failure. The straightforward and fully stable computation of the flood hydrograph along the Isar Valley clearly reflects the impact of the strongly varying topographic characteristics on the How phenomenon. Apart from treating surge flow phenomena as a whole, the analytical solution also offers a rigorous alternative to both (a) the approximate Whitham solution, for generating initial values, and (b) the rough volume balance techniques used to model the wave tip in numerical surge flow computations.
Resumo:
The flavivirus Japanese encephalitis (JE) virus has recently emerged in the Australasian region. To investigate the involvement of infections with related enzootic flaviviruses, namely Murray Valley encephalitis (MVE) virus and Kunjin (KUN) virus, on immunity of pigs to JE virus and to provide a basis for interpretation of serologic data, experimental infections were conducted with combinations of these viruses. Antibody responses to primary and secondary infections were evaluated using panels of monoclonal antibody-based blocking enzyme-link-ed immuno-sorbent assays and microtiter scrum neutralization tests (mSNTs). Identification of the primary infecting virus was possible only using the mSNTs. Following challenge, unequivocal diagnosis was impossible due to variation in immune responses between animals and broadened and/or anamnestic responses. Viremia for JE virus was readily detected in pigs following primary infection, but was not detected following prior exposure to MVE or KUN viruses. Boosted levels of existing cross-neutralizing antibodies to JE virus suggested a role for this response in suppressing JE viremia.
Resumo:
Cape Roberts Project drill core 3 (CRP-3) was obtained from Roberts ridge, a sea-floor high located at 77°S, 12 km offshore from Cape Roberts in western McMurdo Sound, Antarctica. The recovered core is about 939 m long and comprises strata dated as being early Oligocene (possibly latest Eocene) in age, resting unconformably on ∼ 116 m of basement rocks consisting of Palaeozoic Beacon Supergroup sediments. The core includes ten facies commonly occuring in five major associations that are repeated in particular sequences throughout the core and which are interpreted as representing different depositional environments through time. Depositional systems inferred to be represented in the succession include: outer shelf, inner shelf, nearshore to shoreface each under iceberg influence, deltaic and/or grounding-line fan, and ice proximal-ice marginal-subglacial (mass flow/rainout diamictite/subglacial till) singly or in combination. The record is taken to represent the initial talus/alluvial fan setting of a glaciated rift margin adjacent to the block-uplifted Transantarctic Mountains. Development of a deltaic succession upcore was probably associated with the formation of palaeo-Mackay valley with temperate glaciers in its headwaters. At that stage glaciation was intense enough to support glaciers ending in the sea elsewhere along the coast, but a local glacier was fluctuating down to the sea by the time the youngest part of CRP-3 was being deposited. Changes in palaeoenvironmental interpretations in this youngest part of the core are used to estimate relative glacial proximity to the drillsite through time. These inferred glacial fluctuations are compared with the global δ18O and Mg/Ca curves to evaluate the potential of glacial fluctuations on Antarctica for influencing these records of global change. Although the comparisons are tentative at present, the records do have similarities, but there are also some differences that require further evaluation.
Resumo:
Incremental laser-heating analyses of supergene cryptomelane clusters extracted from three distinct weathering profiles from the Mary Valley region, southeast Queensland, Australia, yield reproducible and well-defined plateau ages ranging from 346 +/- 15 to 291 +/- 14 ka (2 a). Precipitation of supergene cryptomelane in this period implies that relative humid climate prevailed in southeast Queensland from 340 to 290 ha, a result consistent with oxygen isotope analyses of marine sediments from Ocean Drilling Program Site 820 and with regional pollen and spore records. These results, the first report on the precise Ar-40/Ar-39 dating of Quaternary supergene cryptomelane, indicate that Ar-40/Ar-39 analysis of pedogenic minerals provides a reliable geochronometer for the study of Quaternary surficial processes useful in the study of soil formation rates, continental paleoclimates, and archaeological sites devoid of datable volcanic minerals.
Resumo:
As part of investigations into Japanese encephalitis (JE) virus and related flaviviruses in northern Australia, 153,529 mosquitoes were collected and processed for virus isolation from the Gulf Plains region of northwest Queensland. Collections front within 30 km of each of the townships of Croydon, Normanton and Karumba yielded 3,087 (2.0%), 66,009 (43.0%), and 84,433 (55.0%) mosquitoes, respectively, from which 16 viruses were isolated. Four isolates of Murray Valley encephalitis (MVE), two of Kunjin (KUN), three of Ross River (1111), and one of Sindbis (SIN) viruses were obtained from Culex sitiens subgroup mosquitoes. Molecular identification of the mosquito species composition of these virus positive pools revealed that most isolates were from pools containing mainly Culex annulirostris Skuse and low numbers of Cidex palpalis (Taylor). Only three pools, one each of MVE, KUN, and RR, were from mosquitoes identified exclusively as Cx. annulirostris. Other viruses isolated include one Edge Hill Virus from Ochlerotatus normanensis (Taylor), an isolate of SIN from Anopheles meraukensis Venhuis, two isolates of RR from Anopheles amictus Edwards, and single isolates of RR from Anopheles bancroftii Giles and Aedes lineatopennis (Ludlow). The isolate of RR from Ae. lineatopennis was the first reported from this species. The public health implications of these isolations in the Gulf Plains region are discussed briefly.
Resumo:
Local scale windfield and air mass characteristics during the onset of two foehn wind events in an alpine hydro-catchment are presented. Grounding of the topographically modified foehn was found to be dependent on daytime surface heating and topographic channelling of flow. The foehn front was observed to advance down-valley until the valley widened significantly. The foehn wind appeared to decouple from the surface downstream of the accelerated flow associated with the valley constriction. and to be lifted above local thermally generated circulations including a lake breeze. Towards evening. the foehn front retreated up valley in response to reduced surface heating and the intrusion into the study area of a deep and cool air mass associated with a regional scale mountain-plain circulation. Differences in the local windfield observed during both case study events reflect the importance of different thermal and dynamic forcings on airflow in complex terrain. These are the result of variation in surface energy exchanges, channelling and blocking of airflow. Observations presented here have both theoretical and applied implications with regard to forecasting foehn onset, wind hazard management, recreational activities and air quality management in alpine settings.
Resumo:
Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.