50 resultados para Youth movements
Resumo:
The field of contemporary youth-specific theatre in Australia is one of change and, in some cases, anxiety. While Drama Studies continue to grow in popularity in schools, previously conventional developmental paradigms have become less mandatory for theatre, for, by, and about young people outside the school context. Instead, 'new generation' approaches in youth-specific performance are placing greater value on young people's own preferences in cultural activity. Yet this development is being tempered and further complicated by a cultural 'generationalism', particularly in larger arts organization as the youth sector becomes a more integral part of marketing strategies for the future. The resulting ambiguity in the representation, value, and positioning of young people and youth-specific arts in Australia's theatre industry is considered by focusing on Magpie2, a former youth-specific company attached to the State Theatre Company of South Australia. Magpie2 ceased operation in 1998 after experimenting with a 'new generation' approach to theatre for young people in the State Theatre realm. Both the artistic policy of Magpie2 Director, Benedict Andrews, and the critical reception of his two productions in 1997, Future Tense and Features of Blown Youth, demonstrate how competing systems of cultural value characterize the field of youth-specific theatre in Australia.
Resumo:
It has been recognised that in order to study the displacement, timing and co-ordination of articulatory components (i.e., tongue. lips, jaw) in speech production it is desirable to obtain high-resolution movement data on multiple structures inside and outside the vocal tract. Until recently, with the exception of X-ray techniques such as cineradiography, the study 0. speech movements has been hindered by the inaccessibility of the oral cavity during speech. X-ray techniques are generally not used because of unacceptable radiation exposure. The aim of the present study was to demonstrate the use of a new physiological device, the electromagnetic articulograph, for assessing articulatory dysfunction subsequent to traumatic brain injury. The components of the device together with the measuring principle are described and data collected from a single case presented. A 19 year-old male who exhibited dysarthria subsequent to a traumatic brain injury was fitted wit 2 the electromagnetic articulograph (Carstens AG-100) and a kinematic analysis of his tongue movements during production of the lingual consonants it, s, k/ within single syllable words was performed. Examination of kinematic parameters including movemmt trajectories, velocity, and acceleration revealed differences in the speed and accuracy of his tongue movements compared to those produced by a non-neurologically impaired adult male. It was concluded that the articulograph is a useful device for diagnosing speed and accuracy disorders in tongue movements during speech and that the device has potential for incorporation into physiologically based rehabilitation programs as a real-time biofeedback instrument.
Resumo:
A matching function methodology is used to investigate the macroeconomic effects of labor market program (LMP) commencements on youth unemployment outflows in Australia using unpublished data that classify commencements and outflows by duration of unemployment. The results indicate that LMPs have had significant effects on outflows from short-term unemployment. There is a net positive effect from LMP commencements on short-term unemployed female outflow rates. However; females experienced negative spillover effects from male LMP commencements. These spillover effects appear to be associated with wage subsidy programs and suggest the net impact Of such programs may have been overstated in previous studies.
What's law got to do with it? Mapping Modern mediation movements in civil & common law jurisdictions
Resumo:
AB Study Design. A cross-sectional study was conducted. Objective. To determine the activity of the deep and superficial fibers of the lumbar multifidus during voluntary movement of the arm. Summary of Background Data. The multifidus contributes to stability of the lumbar spine. Because the deep and superficial parts of the multifidus are near the center of lumbar joint rotation, the superficial fibers are well suited to control spine orientation, and the deep fibers to control intervertebral movement. However, there currently are limited in vivo data to support this distinction. Methods. Electromyographic activity was recorded in both the deep and superficial multifidus, transversus abdominis, erector spinae, and deltoid using selective intramuscular electrodes and surface electrodes during single and repetitive arm movements. The latency of electromyographic onset in each muscle during single movements and the pattern of electromyographic activity during repetitive movements were compared between muscles. Results. With single arm movements, the onset of electromyography in the erector spinae and superficial multifidus relative to the deltoid was dependent on the direction of movement, but the onset in the deep multifidus and transversus abdominis was not. With repetitive arm movements, peaks in superficial multifidus and erector spinae electromyography occurred only during flexion for most subjects, whereas peaks in deep multifidus electromyography occurred during movement in both directions. Conclusions. The deep and superficial fibers of the multifidus are differentially active during single and repetitive movements of the arm. The data from this study support the hypothesis that the superficial multifidus contributes to the control of spine orientation, and that the deep multifidus has a role in controlling intersegmental motion. (C) 2002 Lippincott Williams & Wilkins, Inc.
Resumo:
TROST. S. G., R. R. PATE, J. F. SALLIS, P. S. FREEDSON, W. C. TAYLOR, M. DOWDA, and J. SIRARD. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sports Ererc., Vol. 34, No. 2, pp. 350-355, 2002. Purpose: The purpose of this study was to evaluate age and gender differences in objectively measured physical activity (PA) in a population-based sample of students in grades 1-12. Methods: Participants (185 male, 190 female) wore a CSA 7164 accelerometer for 7 consecutive days. To examine age-related trends. students were grouped as follows: grades 1-3 (N = 90), grades 4-6 (N = 91), grades 7-9 (N = 96). and grades 10-12 (N = 92). Bouts of PA and minutes spent in moderate-to-vigorous PA (MVPA) and vigorous PA (VPA) were examined. Results: Daily MVPA and VPA exhibited a significant inverse relationship with grade level, with the largest differences occurring between grades 1d-3 and 4-6. Boys were more active than girls; however, for overall PA, the magnitudes of the gender differences were modest. Participation in continuous 20-min bouts of PA was low to nonexistent. Conclusion: Our results support the notion that PA declines rapidly during childhood and adolescence and that accelerometers are feasible alternatives to self-report methods in moderately sized population-level surveillance studies.
Resumo:
Cadherin cell-cell adhesion molecules are important determinants of morphogenesis and tissue patterning. C-cadherin plays a key role in the cell-upon-cell movements seen during Xenopus gastrulation. In particular, regulated changes in C-cadherin adhesion critically influence convergence-extension movements, thereby determining organization of the body plan. It is also predicted that remodelling of cadherin adhesive contacts is important for such cell-on-cell movements to occur. The recent demonstration that Epithelial (E-) cadherin is capable of undergoing endocytic trafficking to and from the cell surface presents a potential mechanism for rapid remodelling of such adhesive contacts. To test the potential role for C-cadherin endocytosis during convergence-extension, we expressed in early Xenopus embryos a dominantly-inhibitory mutant of the GTPase, dynamin, a key regulator of clathrin-mediated endocytosis. We report that this dynamin mutant significantly blocked the elongation of animal cap explants in response to activin, accompanied by inhibition of C-cadherin endocytosis. We propose that dynamin-dependent endocytosis of C-cadherin plays an important role in remodelling adhesive contacts during convergence-extension movements in the early Xenopus embryo.
Resumo:
In response to movements involving a large part of the visual field, the eyes of vertebrates typically show an optokinetic nystagmus, a response in which both eyes are tightly yoked. Using a comparative approach, this study sets out to establish whether fish with independent spontaneous eye movements show independent optokinetic nystagmus in each eye. Two fish with independent spontaneous eye movements, the pipefish Corythoichthyes intestinalis and the sandlance Limnichthyes fasciatus were compared with the butterflyfish Chaetodon rainfordi, which exhibits tightly yoked eye movements. In the butterflyfish a single whole-field stimulus elicits conjugate optokinesis, whereas the sandlance and pipefish show asynchronous optokinetic movements. In a split drum experiment, when both eyes were stimulated in opposite directions with different speeds, both the sandlance and the pipefish compensated independently with each eye. The optokinetic response in the butterflyfish showed some disconjugacy but was generally confused. When one eye was occluded, the seeing eye was capable of driving the occluded eye in both the butterflyfish and the pipefish but not in the sandlance. Monocular occlusion therefore unmasks a link between the two eyes in the pipefish, which is overridden when both eyes receive visual input. The sandlance never showed any correlation between the eyes during optokinesis in all stimulus conditions. This suggests that there are different levels of linkage between the two eyes in the oculomotor system of teleosts, depending on the visual input.