60 resultados para Worms, Fossil
Resumo:
Oligocene resin from New Zealand's Rotowaro coalfield displays DTA and DTG traces similar to those of other fossil resins. It modifies the thermal behaviour of low rank coal in raising the peak combustion temperature and lowering its rate of combustion, a behaviour that may be common among liptinite macerals. The effect is not additive and unlike other coal constituents the resinite component does not deteriorate with time. (C) 1997 Elsevier Science B.V.
Resumo:
Most lungfish tooth plates, that are arranged in radiating ridges derived from the fusion of separate cusps in young juveniles, are based on a framework of enamel, mantle dentine and bone that encloses a mass of specialized dentines forming the occlusal surface. In most taxa, the specialized dentines are interdenteonal and circumdenteonal dentine, but a few derived genera have petrodentine as well. Petrodentine, as originally defined, describes a specific form of hypermineralized dentine in adult tooth plates of the Recent African lungfish Protopterus. The ontogeny of fossil and Recent lungfish tooth plates demonstrates that petrodentine is derived by continuous enhancement of the hard tissue of the primary core of the initially isolated cusps of the tooth plate, and that interdenteonal dentine with denteons of circumdenteonal dentine is a secondary development in the tooth plate around and below the first formed cusps of the ridges. In dipnoans that lack petrodentine in adults the primary core of the cusps is not enhanced, but is removed by wear. The hard tissues of the dipnoan tooth plate provide useful characters for defining dipnoan taxa, as do the differing arrangements of the tissues in each species. Details of the arrangement of the enclosed specialized dentines are surprisingly variable among genera, and are significant for the structure and function of the tooth plate. Little regularity of structure is discernible in the histology of tooth plates of early dipnoans, but derived genera have more predictable structure. Consistent with other uniquely dipnoan characters, like the composition of the dermal skull, an evolutionary progression is evident within the group in the fine structure of the dentition, and, as with the bones of the dermal skull, little similarity is demonstrable between the dentines of dipnoans and tetrapods.
Resumo:
Mass spectrometric U-series dating of speleothems from Tangshan Cave, combined with ecological and paleoclimatic evidence, indicates that Nanjing Man, a typical Homo erectus morphologically correlated with Peking Man at Zhoukoudian, should be at least 580 k.y. old, or more likely lived during the glacial oxygen isotope stage 16 (similar to 620 ka). Such an age estimate, which is similar to 270 ka older than previous electron spin resonance and alpha counting U-series dates, has significant implications for the evolution of Asian H. erectus. Dentine and enamel samples from the coexisting fossil layer yield significantly younger apparent ages, that of the enamel sample being only less than one-fourth of the minimum age of Nanjing Man. This suggests that U uptake history is far more complex than existing models can handle. As a result, great care must be taken in the interpretation of electron spin resonance and U-series dates of fossil teeth.
Resumo:
This study continues the collection of data on the anterior adhesive areas and secretions of monopisthocotylean monogenean (flatworm) parasites and begins an investigation of their phylogenetic usefulness. Here, two species of parasitic worms from an elasmobranch, Troglocephalus rhinobatidis (Monocotylidae: Dasybatotreminae) and Neoheterocotyle rhinobatidis (Monocotylidae: Heterocotylinae), are compared and contrasted. It has been suggested in recent literature that these two taxa are more closely related than is currently recognised. Our data support this view. Both species have multiple apertures on the ventral anterior margin through which adhesive is secreted. Two types of secretion exit from multiple adjacent duct endings terminating in each aperture: rod-shaped (S1) and spherical-shaped (S2) bodies. S1 bodies of both species show nano-banding of similar size and are membrane bound. Ultrastructure of the glands, ducts, duct endings and secreted adhesive is similar for both species, but aperture shape differs. Away from the adhesive areas, tegumental inclusions are found to differ between the two species and another, apparently non-adhesive, secretion is found in N. rhinobatidis.
Resumo:
Lecithocladium invasor n.sp. is described from the oesophagus of Naso annulatus, N. tuberosus and N. vlamingii on the Great Barrier Reef, Australia. The worms penetrate the oesophageal mucosa and induce chronic transmural nodular granulomas, which expand the full thickness of the oesophageal wall and protrude both into the oesophageal lumen and from the serosal surface. We observed two major types of lesions: large ulcerated, active granulomas, consisting of a central cavity containing a single or multiple live worms; and many smaller chronic fibrous submucosal nodules. Small, identifiable but attenuated, worms and degenerate worm fragments were identified within some chronic nodules. Co-infection of the posterior oesophagus of the same Naso species with Lecithocladium chingi was common. L. chingi is redescribed from N. annulatus, N. brevirostris, N. tuberosus and A vlamingii. Unlike L. invasor n.sp., L. chingi was not associated with significant lesions. The different pathenogenicity of the two species in acanthurid fish is discussed.
Resumo:
A didymozoid trematode encapsulated in the gills of orange-spotted grouper, Epinephelus coioides Hamilton, was observed in October 1997 and September 1999 among pond-reared fish in the Philippines. Capsule prevalence was 33% and 18% and mean intensity 2 and 1, respectively. The opaque-white and yellowish capsules were found only on the first gill arch and were attached lengthwise along the posterior surface of the primary gill filaments. When the capsules were opened, long thread-like worms were revealed, which were identified as Gonapodasmius epinepheli Abdul-Salam, Sreelatha and Farah. The parasites were encapsulated between the basement membrane of the epithelium and the efferent artery of the gill filament. The response of the host included mild hyperplasia of the interlamellar epithelium and an increase in the number of mucous cells. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A technique is described to preserve the pigment found in the bodies and the intestine of some brightly coloured and darkly pigmented benedeniine capsalid monogeneans. Previous studies of these pigmented capsalids have proven difficult because the pigmentation usually disappears when the worms are fixed using preservatives containing concentrations of formalin over 5% and/or ethanol, acetic acid, chromic acid, picric acid and mercuric chloride. The technique developed here uses a fixative comprising glycerol, acetone and formalin (GAF). After fixation under light coverslip compression for three minutes, specimens are transferred to absolute acetone for three minutes and cleared in a mixture of nine parts cedar wood oil and one part absolute acetone before mounting in Canada balsam. Processing must be carried out quickly, as these chemicals will cause the pigments to fade if the specimens are exposed to them for too long. Pigmented benedeniines processed using this technique retain the distribution, intensity and colour observed in live worms. The colour and distribution of pigmentation in monogeneans may be of taxonomic importance and this technique aids preparation of whole-mounts suitable for registration as type-material.
Resumo:
The composition of the Pyrgulidae and its relationships to other member families of the caenogastropod superfamily Rissooidea are examined after a consideration of new anatomical (including gross anatomy, sperm ultrastructure), conchological (including protoconch features), ecological, biogeographical and palaeontological data and a re-evaluation of existing literature. Pyrgulidae can be distinguished from hydrobiids unequivocally only with the aid of the radula. Sperm ultrastructural features suggest a very close relationship between the Pyrgulidae, the Hydrobiidae and the Bithyniidae (in fact no family-diagnostic sperm characters can be found to separate these three taxa). Based upon neontological and fossil evidence it is likely that pyrgulids represent a Miocene offshoot from a paratethyal hydrobiid lineage. Pyrgulids may also represent the stock from which the baicaliids arose, in which case the Pyrgulidae must be considered a paraphyletic group. The huge biogeographic gap between the Caspian Sea and Lake Baikal is to some extent bridged by the finding of a Neogene pyrgulid from the Altai Mountains. An alternative scenario for the origin of baicaliids is presented.
Resumo:
Hookworms infect perhaps one-fifth of the entire human population, yet little is known about their interaction with our immune system. The two major species are Necator americanus, which is adapted to tropical conditions, and Ancylostoma duodenale, which predominates in more temperate zones. While having many common features, they also differ in several key aspects of their biology. Host immune responses are triggered by larval invasion of the skin, larval migration through the circulation and lungs, and worm establishment in the intestine, where adult worms feed on blood and mucosa while injecting various molecules that facilitate feeding and modulate host protective responses. Despite repeated exposure, protective immunity does not seem to develop in humans, so that infections occur in all age groups (depending on exposure patterns) and tend to be prolonged. Responses to both larval and adult worms have a characteristic T-helper type 2 profile, with activated mast cells in the gut mucosa, elevated levels of circulating immunoglobulin E, and eosinoophilia in the peripheral blood and local tissues, features also characteristic of type I hypersensitivity reactions. The longevity of adult hookworms is determined probably more by parasite genetics than by host immunity. However, many of the proteins released by the parasites seem to have immunomodulatory activity, presumably for self-protection. Advances in molecular biotechnology enable the identification and characterization of increasing numbers of these parasite molecules and should enhance our detailed understanding of the protective and pathogenetic mechanisms in hookworm infections.
Resumo:
Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.
Resumo:
Thermally unaltered conodont elements, brachiopods. and vertebrates were analyzed with reverse phase high profile liquid chromatography to locate and quantify amino acid remnants of the original organic matrix in the fossils. No consistent similarities in amino acid content were found in conodont taxa. and criteria based on organic residues appear to have no taxonomic significance in the fossils tested from these localities. However, hydroxyproline. an amino acid that is found in the collagen molecules of animals. as well as in the glycoproteins in the cell walls and reproductive tissues of certain plants, is represented in most taxa. The organic matter retained in the impermeable crowns of conodont elements might have been derived originally from a form of collagen. Biochemical analyses. correlated with histochemical tests, demonstrate that organic matter is an integral part of the hyaline tissue of the element crown and not the result of surface contamination. Tests of a range of vertebrate and invertebrate fossil hard tissues produced similar results. The analyses indicate that hyaline tissue in the conodont element crown is not a form of vertebrate enamel. which contains no collagen. Albid tissue. with little or no organic content. is not a form of vertebrate bone or dentine, both based on collagen and low in mineral. Although these results do not help to determine the phylogenetic affinities of conodont animals, they indicate teat conodont elements do not contain hard tissues characteristic of vertebrate animals.
Resumo:
The extant lungfish, including three genera, the Australian, South American and African lungfishes, retain a dentition that appeared first in the Devonian, in some of the oldest members of this group. The dentition consists of permanent tooth plates with persistent cusps that appear early in development of the fish. The cusps, separate early in development, form ridges that are arranged in a radiating pattern, and fusion of the cusps to each other and to the underlying jaw bone produces a tooth plate. The lungfish dentition is based on a template of mantle dentine that surrounds bone trabeculae enclosed in the tooth plate. The mantle layer is covered by enamel. In most derived dipnoans, this framework encloses two further forms of dentine, known as interdenteonal and circumdenteonal dentines. The tooth plates grow in area and in depth without evidence of macroscopic resorption of dentines or of enamel. Increase in size and changes in shape of lungfish tooth plates is actually achieved by a process involving microscopic remodelling of the bone contained within the margin of each tooth plate, and the later addition of new dentines and enamel within and around the bone. This is accomplished without creating weakness in the structural integrity of the tooth plate and bone complex, and proceeds in line with growth and remodelling of the jaw bones attached to the tooth plates.
Resumo:
The Antarctic nemertean worm, Parborlasia corrugatus, exhibits gigantism, reaching at least 100 g, yet lacks any specialised respiratory organs. The diffusion of oxygen into this worm occurs cutaneously. We examined the metabolic rate of P. corrugatus at -1degreesC in response to decreasing ambient PO2. As the PO2 of the water decreased. so did the metabolic rate of P. corrugatus, indicating that this nemertean worm is an extreme example of an oxyconformer. When the water PO2 decreased below about 120 mmHg, the normally short, round worms became elongated and extremely flattened. This behavioural mechanism would allow for an increase in surface area of the skin, thereby facilitating the diffusion of oxygen.
Resumo:
Hookworms routinely reach the gut of nonpermissive hosts but fail to successfully feed, develop, and reproduce. To investigate the effects of host-parasite coevolution on the ability of hookworms to feed in nonpermissive hosts, we cloned and expressed aspartic proteases from canine and human hookworms. We show here that a cathepsin D-like protease from the canine hookworm Ancylosotoma caninum (Ac-APR-1) and the orthologous protease from the human hookworm Necator americanus (Na-APR-1) are expressed in the gut and probably exert their proteolytic activity extracellularly. Both proteases were detected immunologically and enzymatically in somatic extracts of adult worms. The two proteases were expressed in baculovirus, and both cleaved human and dog hemoglobin (Hb) in vitro. Each protease digested Hb from its permissive host between twofold (whole molecule) and sixfold (synthetic peptides) more efficiently than Hb from the nonpermissive host, despite the two proteases' having identical residues lining their active site clefts. Furthermore, both proteases cleaved Hb at numerous distinct sites and showed different substrate preferences. The findings suggest that the paradigm of matching the molecular structure of the food source within a host to the molecular structure of the catabolic proteases of the parasite is an important contributing factor for host-parasite compatibility and host species range.
Resumo:
Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them.