73 resultados para Weak Polynomial Identities
Resumo:
Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this article is to examine the value accruing to a regional area in Australia from the location of an undergraduate Japanese language education program in a university in that area. The focus is on the manner in which the inclusion of such a program enhances the sustainability of the area. Sustainability is here defined as the resilience demonstrated by social subjects in the absence of the full range of services available in more densely populated and resource advantaged areas. Such resilience implies an ongoing capacity on the part of subjects to contribute productively to social and economic networks in the area. The discussion includes two cases of graduates of the program under review. On the basis of these cases, the argument is advanced that local regional and rural area access to a tertiary sector second language program offers a unique and valuable strategic dimension to the personal and professional development of social agents in regional areas and to the sustainability of these areas generally.
Resumo:
We experimentally determine weak values for a single photon's polarization, obtained via a weak measurement that employs a two-photon entangling operation, and postselection. The weak values cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We observe the variation in the size of the weak value with measurement strength, obtaining an average measurement of the S-1 Stokes parameter more than an order of magnitude outside of the operator's spectrum for the smallest measurement strengths.
Resumo:
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.
Resumo:
Recently, there have been several suggestions that weak Kerr nonlinearity can be used for generation of macroscopic superpositions and entanglement and for linear optics quantum computation. However, it is not immediately clear that this approach can overcome decoherence effects. Our numerical study shows that nonlinearity of weak strength could be useful for macroscopic entanglement generation and quantum gate operations in the presence of decoherence. We suggest specific values for real experiments based on our analysis. Our discussion shows that the generation of macroscopic entanglement using this approach is within the reach of current technology.
Resumo:
The Cunningham project seeks to factor numbers of the form bn±1 with b = 2, 3, . . . small. One of the most useful techniques is Aurifeuillian Factorization whereby such a number is partially factored by replacing bn by a polynomial in such a way that polynomial factorization is possible. For example, by substituting y = 2k into the polynomial factorization (2y2)2+1 = (2y2−2y+1)(2y2+2y+1) we can partially factor 24k+2+1. In 1962 Schinzel gave a list of such identities that have proved useful in the Cunningham project; we believe that Schinzel identified all numbers that can be factored by such identities and we prove this if one accepts our definition of what “such an identity” is. We then develop our theme to similarly factor f(bn) for any given polynomial f, using deep results of Faltings from algebraic geometry and Fried from the classification of finite simple groups.
Resumo:
Recent advances in biomedical science indicate that it may eventually be possible to intervene in the biological process of human ageing. This paper overviews the current state of the science of lifespan extension and promising future directions. It is uncertain whether 'strong' lifespan extension - the extension of human life beyond the maximum 122 years so far observed - will become a reality. It is more likely that cumulative effects of numerous scientific and biomedical advances in the treatment of common disease will produce 'weak' lifespan extension - the extension of average life expectancy. The practical application of molecular, genetic and nanomaterials research may also lead to advances in life expectancy. It is not too early to begin to consider the policy implications of either form of lifespan extension.
Resumo:
We investigate decoherence effects in the recently suggested quantum-computation scheme using weak nonlinearities, strong probe coherent fields, detection, and feedforward methods. It is shown that in the weak-nonlinearity-based quantum gates, decoherence in nonlinear media can be made arbitrarily small simply by using arbitrarily strong probe fields, if photon-number-resolving detection is used. On the contrary, we find that homodyne detection with feedforward is not appropriate for this scheme because in this case decoherence rapidly increases as the probe field gets larger.