109 resultados para Visual programming languages
Resumo:
It is known that some Virtual Reality (VR) head-mounted displays (HMDs) can cause temporary deficits in binocular vision. On the other hand, the precise mechanism by which visual stress occurs is unclear. This paper is concerned with a potential source of visual stress that has not been previously considered with regard to VR systems: inappropriate vertical gaze angle. As vertical gaze angle is raised or lowered the 'effort' required of the binocular system also changes. The extent to which changes in vertical gaze angle alter the demands placed upon the vergence eye movement system was explored. The results suggested that visual stress may depend, in part, on vertical gaze angle. The proximity of the display screens within an HMD means that a VR headset should be in the correct vertical location for any individual user. This factor may explain some previous empirical results and has important implications for headset design. Fortuitously, a reasonably simple solution exists.
Resumo:
Background. Age-related motor slowing may reflect either motor programming deficits, poorer movement execution, or mere strategic preferences for online guidance of movement. We controlled such preferences, limiting the extent to which movements could be programmed. Methods. Twenty-four young and 24 older adults performed a line drawing task that allowed movements to he prepared in advance in one case (i.e., cue initially available indicating target location) and not in another (i.e., no cue initially available as to target location). Participants connected large or small targets illuminated by light-emitting diodes upon a graphics tablet that sampled pen tip position at 200 Hz. Results. Older adults had a disproportionate difficulty initiating movement when prevented from programming in advance. Older adults produced slower, less efficient movements, particularly when prevented from programming under greater precision requirements. Conclusions. The slower movements of older adults do not simply reflect a preference for online control, as older adults have less efficient movements when forced to reprogram their movements. Age-related motor slowing kinematically resembles that seen in patients with cerebellar dysfunction.
Resumo:
The deep-sea pearleye, Scopelarchus michaelsarsi (Scopelarchidae) is a mesopelagic teleost with asymmetric or tubular eyes. The main retina subtends a large dorsal binocular field, while the accessory retina subtends a restricted monocular field of lateral visual space. Ocular specializations to increase the lateral visual field include an oblique pupil and a corneal lens pad. A detailed morphological and topographic study of the photoreceptors and retinal ganglion cells reveals seven specializations: a centronasal region of the main retina with ungrouped rod-like photoreceptors overlying a retinal tapetum; a region of high ganglion cell density (area centralis of 56.1x10(3) cells per mm(2)) in the centrolateral region of the main retina; a centrotemporal region of the main retina with grouped rod-like photoreceptors; a region (area giganto cellularis) of large (32.2+/-5.6 mu m(2)), alpha-like ganglion cells arranged in a regular array (nearest neighbour distance 53.5+/-9.3 mu m with a conformity ratio of 5.8) in the temporal main retina; an accessory retina with grouped rod-like photoreceptors; a nasotemporal band of a mixture of rod-and cone-like photoreceptors restricted to the ventral accessory retina; and a retinal diverticulum comprised of a ventral region of differentiated accessory retina located medial to the optic nerve head. Retrograde labelling from the optic nerve with DiI shows that approximately 14% of the cells in the ganglion cell layer of the main retina are displaced amacrine cells at 1.5 mm eccentricity. Cryosectioning of the tubular eye confirms Matthiessen's ratio (2.59), and calculations of the spatial resolving power suggests that the function of the area centralis (7.4 cycles per degree/8.1 minutes of are) and the cohort of temporal alpha-like ganglion cells (0.85 cycles per degree/70.6 minutes of are) in the main retina may be different. Low summation ratios in these various retinal zones suggests that each zone may mediate distinct visual tasks in a certain region of the visual field by optimizing sensitivity and/or resolving power.
Resumo:
A dissociation between two putative measures of resource allocation skin conductance responding, and secondary task reaction time (RT), has been observed during auditory discrimination tasks. Four experiments investigated the time course of the dissociation effect with a visual discrimination task. participants were presented with circles and ellipses and instructed to count the number of longer-than-usual presentations of one shape (task-relevant) and to ignore presentations of the other shape (task-irrelevant). Concurrent with this task, participants made a speeded motor response to an auditory probe. Experiment 1 showed that skin conductance responses were larger during task-relevant stimuli than during task-irrelevant stimuli, whereas RT to probes presented at 150 ms following shape onset was slower during task-irrelevant stimuli. Experiments 2 to 4 found slower RT during task-irrelevant stimuli at probes presented at 300 ms before shape onset until 150 ms following shape onset. At probes presented 3,000 and 4,000 ms following shape onset probe RT was slower during task-relevant stimuli. The similarities between the observed time course and the so-called psychological refractory period (PRF) effect are discussed.
Resumo:
Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation: very dim downwelling sunlight and bioluminescence, both of which are, in most cases. maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deepsea tapeta usually appear blue to the human observer. reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, cn. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer. these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A set of five tasks was designed to examine dynamic aspects of visual attention: selective attention to color, selective attention to pattern, dividing and switching attention between color and pattern, and selective attention to pattern with changing target. These varieties of visual attention were examined using the same set of stimuli under different instruction sets; thus differences between tasks cannot be attributed to differences in the perceptual features of the stimuli. ERP data are presented for each of these tasks. A within-task analysis of different stimulus types varying in similarity to the attended target feature revealed that an early frontal selection positivity (FSP) was evident in selective attention tasks, regardless of whether color was the attended feature. The scalp distribution of a later posterior selection negativity (SN) was affected by whether the attended feature was color or pattern. The SN was largely unaffected by dividing attention across color and pattern. A large widespread positivity was evident in most conditions, consisting of at least three subcomponents which were differentially affected by the attention conditions. These findings are discussed in relation to prior research and the time course of visual attention processes in the brain. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Relative eye size, gross brain morphology and central localization of 2-[I-125]iodomelatonin binding sites and melatonin receptor gene expression were compared in six gadiform fish living at different depths in the north-east Atlantic Ocean: Phycis blennoides (capture depth range 265-1260 m), Nezumia aequalis (445-1512 m), Coryphaenoides rupestris (706-1932 m), Trachyrincus murrayi (1010-1884 m), Coryphaenoides guentheri (1030 m) and Coryphaenoides (Nematonurus) armatus (2172-4787 m). Amongst these, the eye size range was 0.15-0.35 of head length with a value of 0.19 for C.(N.) armatus, the deepest species. Brain morphology reflected behavioural differences with well-developed olfactory regions in P.blennoides, T.murrayi and C. (N.) armatus and evidence of olfactory deficit in N. aequalis, C. rupestris and C. guentheri. All species had a clearly defined optic tectum with 2-[I-125] iodomelatonin binding and melatonin receptor gene expression localized to specific brain regions in a similar pattern to that found in shallow-water fish. Melatonin receptors were found throughout the visual structures of the brains of all species. Despite living beyond the depth of penetration of solar light these fish have retained central features associated with the coupling of cycles of growth, behaviour and reproduction to the diel light-dark cycle. How this functions in the deep sea remains enigmatic.
Resumo:
Animals that go on hunting expeditions face the problem of finding the way home at the end of the day. A group of hunting spiders has now been added to the list of animals that use the celestial pattern of polarized light as a compass for navigation. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents the unique collection of additional features of Qu-Prolog, a variant of the Al programming language Prolog, and illustrates how they can be used for implementing DAI applications. By this we mean applications comprising communicating information servers, expert systems, or agents, with sophisticated reasoning capabilities and internal concurrency. Such an application exploits the key features of Qu-Prolog: support for the programming of sound non-clausal inference systems, multi-threading, and high level inter-thread message communication between Qu-Prolog query threads anywhere on the internet. The inter-thread communication uses email style symbolic names for threads, allowing easy construction of distributed applications using public names for threads. How threads react to received messages is specified by a disjunction of reaction rules which the thread periodically executes. A communications API allows smooth integration of components written in C, which to Qu-Prolog, look like remote query threads.
Resumo:
1. Establishing biological control agents in the field is a major step in any classical biocontrol programme, yet there are few general guidelines to help the practitioner decide what factors might enhance the establishment of such agents. 2. A stochastic dynamic programming (SDP) approach, linked to a metapopulation model, was used to find optimal release strategies (number and size of releases), given constraints on time and the number of biocontrol agents available. By modelling within a decision-making framework we derived rules of thumb that will enable biocontrol workers to choose between management options, depending on the current state of the system. 3. When there are few well-established sites, making a few large releases is the optimal strategy. For other states of the system, the optimal strategy ranges from a few large releases, through a mixed strategy (a variety of release sizes), to many small releases, as the probability of establishment of smaller inocula increases. 4. Given that the probability of establishment is rarely a known entity, we also strongly recommend a mixed strategy in the early stages of a release programme, to accelerate learning and improve the chances of finding the optimal approach.
Resumo:
The compound eyes of mantis shrimps (stomatopod crustaceans) include an unparalleled diversity of visual pigments and spectral receptor classes in retinas of each species. We compared the visual pigment and spectral receptor classes of 12 species of gonodactyloid stomatopods from a variety of photo environments, from intertidal to deep water ( > 50 m), to learn how spectral tuning in the different photoreceptor types is modified within different photic environments. Results show that receptors of the peripheral photoreceptors, those outside the midband which are responsible for standard visual tasks such as spatial vision and motion detection, reveal the well-known pattern of decreasing lambda(max) with increasing depth. Receptors of midband rows 5 and 6, which are specialized for polarization vision, are similar in all species, having visual lambda(max)-values near 500 nm, independent of depth. Finally the spectral receptors of midband rows 1 to 4 are tuned for maximum coverage of the spectrum of irradiance available in the habitat of each species. The quality of the visual worlds experienced by each species we studied must vary considerably, but all appear to exploit the full capabilities offered by their complex visual systems.
Resumo:
1. A model of the population dynamics of Banksia ornata was developed, using stochastic dynamic programming (a state-dependent decision-making tool), to determine optimal fire management strategies that incorporate trade-offs between biodiversity conservation and fuel reduction. 2. The modelled population of B. ornata was described by its age and density, and was exposed to the risk of unplanned fires and stochastic variation in germination success. 3. For a given population in each year, three management strategies were considered: (i) lighting a prescribed fire; (ii) controlling the incidence of unplanned fire; (iii) doing nothing. 4. The optimal management strategy depended on the state of the B. ornata population, with the time since the last fire (age of the population) being the most important variable. Lighting a prescribed fire at an age of less than 30 years was only optimal when the density of seedlings after a fire was low (< 100 plants ha(-1)) or when there were benefits of maintaining a low fuel load by using more frequent fire. 5. Because the cost of management was assumed to be negligible (relative to the value of the persistence of the population), the do-nothing option was never the optimal strategy, although lighting prescribed fires had only marginal benefits when the mean interval between unplanned fires was less than 20-30 years.
Resumo:
A chance constrained programming model is developed to assist Queensland barley growers make varietal and agronomic decisions in the face of changing product demands and volatile production conditions. Unsuitable or overlooked in many risk programming applications, the chance constrained programming approach nonetheless aptly captures the single-stage decision problem faced by barley growers of whether to plant lower-yielding but potentially higher-priced malting varieties, given a particular expectation of meeting malting grade standards. Different expectations greatly affect the optimal mix of malting and feed barley activities. The analysis highlights the suitability of chance constrained programming to this specific class of farm decision problem.
Resumo:
A modelling framework is developed to determine the joint economic and environmental net benefits of alternative land allocation strategies. Estimates of community preferences for preservation of natural land, derived from a choice modelling study, are used as input to a model of agricultural production in an optimisation framework. The trade-offs between agricultural production and environmental protection are analysed using the sugar industry of the Herbert River district of north Queensland as an example. Spatially-differentiated resource attributes and the opportunity costs of natural land determine the optimal tradeoffs between production and conservation for a range of sugar prices.