47 resultados para Venom specificity
Resumo:
The venom from Australian elapid snakes contains a complex mixture of polypeptide toxins that adversely affect multiple homeostatic systems within their prey in a highly specific and targeted manner. Included in these toxin families are the recently described venom natriuretic peptides, which display similar structure and vasoactive functions to mammalian natriuretic peptides. This paper describes the identification and detailed comparative analysis of the cDNA transcripts coding for the mature natriuretic peptide from a total of nine Australian elapid snake species. Multiple isoforms were identified in a number of species and represent the first description of a natriuretic peptide from the venom gland for most of these snakes. Two distinct natriuretic peptide isoforms were selected from the common brown snake (Pseudonaja textilis), PtNP-a, and the mulga (Pseudechis australis), PaNP-c, for recombinant protein expression and functional analysis. Only one of these peptides, PtNP-a, displayed cGMP stimulation indicative of normal natriuretic peptide activity. Interestingly, both recombinant peptides demonstrated a dose-dependent inhibition of angiotensin converting enzyme (ACE) activity, which is predictive of the vasoactive effects of the toxin. The natriuretic peptides, however, did not possess any coagulopathic activity, nor did they inhibit or potentiate thrombin, adenosine diphosphate or arachidonic acid induced platelet aggregation. The data presented in this study represent a significant resource for understanding the role of various natriuretic peptides isoforms during the envenomation process by Australian elapid snakes. (c) 2006 Published by Elsevier Masson SAS.
Resumo:
Monogeneans (flatworms) are among the most host-specific of parasites in general and may be the most host-specific of all fish parasites. Specificity, in terms of a restricted spatial distribution within an environment, is not unique to parasites and is displayed by some fungi, insects, birds, symbionts and pelagic larvae of free-living marine invertebrates. The nature of cues, how habitats are recognised and how interactions between partners are mediated and maintained is of interest across these diverse associations. We review some experiments that demonstrate important factors that contribute to host-specificity at the level of infective stages (larvae of oviparous monogeneans; juveniles of viviparous gyrodactylids) and adult parasites. Recent research on immune responses by fish to monogenean infections is considered. We emphasise the critical importance of host epidermis to the Monogenea. Monogeneans live on host epidermis, they live in its products (e.g. mucus), monopisthocotyleans feed on it, some of its products are attractants and it may be an inhospitable surface because of its immunological activity. We focus attention on fish but reference is made to amphibian hosts. We develop the concept for a potential role in host-speciality by the anterior adhesive areas, either the specialised tegument and/or anterior secretions produced by monogeneans for temporary but firm attachment during locomotion on host epithelial surfaces. Initial contact between the anterior adhesive areas of infective stages and host epidermis may serve two important purposes. (1) Appropriate sense organs or receptors on the parasite interact with a specific chemical or chemicals or with surface structures on host epidermis. (2) A specific but instant recognition or reaction occurs between component(s) of host mucus and the adhesive(s) secreted by monogeneans. The chemical composition of fish skin is known to be species-specific and our preliminary analysis of the chemistry of some monogenean adhesives indicates they are novel proteins that display some differences between parasite families and species. (C) 2000 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
This research adopts a resource allocation theoretical framework to generate predictions regarding the relationship between self-efficacy and task performance from two levels of analysis and specificity. Participants were given multiple trials of practice on an air traffic control task. Measures of task-specific self-efficacy and performance were taken at repeated intervals. The authors used multilevel analysis to demonstrate dynamic main effects, dynamic mediation and dynamic moderation. As predicted, the positive effects of overall task specific self-efficacy and general self-efficacy on task performance strengthened throughout practice. In line with these dynamic main effects, the effect of general self-efficacy was mediated by overall task specific self-efficacy; however this pattern emerged over time. Finally, changes in task specific self-efficacy were negatively associated with changes in performance at the within-person level; however this effect only emerged towards the end of practice for individuals with high levels of overall task specific self-efficacy. These novel findings emphasise the importance of conceptualising self-efficacy within a multi-level and multi-specificity framework and make a significant contribution to understanding the way this construct relates to task performance.
Resumo:
In the think/no-think paradigm people practice “suppressing” a learned response to a cue. Practice at suppression appears to produce a long-lasting inhibition of the suppressed response, as evidenced by a subsequent failure to recall the response to an extralist (associatively related, non-studied) cue. Critical to this interpretation is the assumption that suppression practice is necessary. A series of interference paradigms, which do not involve suppression practice and which are structurally similar to the think/no-think paradigm, provide evidence against the inhibition interpretation. Additional evidence against inhibition derives from our demonstrations herewith that the findings from the think/no-think paradigm can be replicated without any apparent suppression requirement. Furthermore, the results from all of these paradigms can be explained by the same simple principle. Namely, that when an item exists in an extended associative network, strengthening the item makes it interfere with the recall of other items in the network.