68 resultados para Variability Modeling
Resumo:
It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.
Resumo:
The goal of the current study was to identify discrete longitudinal patterns of change in adolescent smoking using latent growth mixture modeling. Five distinct longitudinal patterns were identified. A group of early rapid escalators was characterized by early escalation (at age 13) that rapidly increased to heavy smoking. A pattern characterized by occasional puffing up until age 15, at which time smoking escalated to moderate levels was also identified (late moderate escalators). Another group included adolescents who, after age 15, began to escalate slowly in their smoking to light (0.5 cigarettes per month) levels (late slow escalators). Finally, a group of stable light smokers (those who smoked 1-2 cigarettes per month) and a group of stable puffers (those. who smoked only a few puffs per month) were also identified. The stable puffer group was the largest group and represented 25% of smokers.
Resumo:
Land related information about the Earth's surface is commonIJ found in two forms: (1) map infornlation and (2) satellite image da ta. Satellite imagery provides a good visual picture of what is on the ground but complex image processing is required to interpret features in an image scene. Increasingly, methods are being sought to integrate the knowledge embodied in mop information into the interpretation task, or, alternatively, to bypass interpretation and perform biophysical modeling directly on derived data sources. A cartographic modeling language, as a generic map analysis package, is suggested as a means to integrate geographical knowledge and imagery in a process-oriented view of the Earth. Specialized cartographic models may be developed by users, which incorporate mapping information in performing land classification. In addition, a cartographic modeling language may be enhanced with operators suited to processing remotely sensed imagery. We demonstrate the usefulness of a cartographic modeling language for pre-processing satellite imagery, and define two nerv cartographic operators that evaluate image neighborhoods as post-processing operations to interpret thematic map values. The language and operators are demonstrated with an example image classification task.
Resumo:
The reasons for the intra- and interindividual variability in the clearance of valproic acid (VPA) have not been completely characterized. The aim of this study was to examine day-night changes in the clearance of 3-oxo-valproate (3-oxo-VPA), 4-hydroxy-valproate (4-OH-VPA), and valproic acid glucuronides under steady state. Six diurnally active healthy male volunteers ingested 200 mg sodium valproate 12 hourly, at 0800 and 2000, for 28 days. On the last study day, two sequential 12-h urine samples were collected commencing at 2000 the evening before. Plasma samples were obtained at the end of each collection. Following alkaline hydrolysis, urine was analyzed for concentrations of VPA, 3-oxo-VPA, and 4-OH-VPA. A separate aliquot was assayed for creatinine (CR). The plasma concentrations of VPA, 3-oxo-VPA, 2-en-VPA, and CR were determined. The analysis of VPA and its metabolites was performed by CC-MS. There was an increase in plasma 3-oxo-VPA concentration at 0800, sampling as compared to 2000 sampling (p < .05). The urinary excretion of 3-oxo-VPA and VPA glucuronides were decreased between 2000 and 0800, compared to between 0800, and 2000, by 30% and 50% respectively (p < .05). These results indicate a nocturnal decrease in renal clearance of 3-oxo-VPA rather than a decrease in the beta -oxidation of VPA at night. These differences were not explained by differences between the sampling periods in CR excretion. These results indicate the importance of collecting samples of 24-h duration when studying metabolic profiles of VPA.
Resumo:
The present study estimated the population pharmacokinetics of lamotrigine in patients receiving oral lamotrigine therapy with drug concentration monitoring, and determined intersubject and intrasubject variability. A total of 129 patients were analyzed from two clinical sites. Of these, 124 patients provided spare data (198 concentration-time points); nine patients (four from a previous group plus five from the current group) provided rich data (431 points). The population analysis was conducted using P-PHARM (TM) (SIMED Scientific Software, Cedex, France), a nonlinear mixed-effect modeling program. A single exponential elimination model (first-order absorption) with heteroscedastic weighting was used. Apparent clearance (CL/F) and volume of distribution (V/F) were the pharmacokinetic parameters estimated. Covariate analysis was performed to determine which factors explained any of the variability associated with lamotrigine clearance. Population estimates of CL/F and V/F for lamotrigine generated in the final model were 2.14 +/- 0.81 L/h and 78.1 +/- 5.1 L/kg. Intersubject and intrasubject variability for clearance was 38% and 38%, respectively. The covariates of concomitant valproate and phenytoin therapy accounted for 42% of the intersubject variability of clearance. Age, gender, clinic site, and other concomitant antiepileptic drugs did not influence clearance. This study of the population pharmacokinetics of lamotrigine in patients using the drug clinically provides useful data and should lead to better dosage individualization for lamotrigine.