112 resultados para VENTRICULAR REMODELING
Resumo:
One key role of the renal proximal tubule is the reabsorption of proteins from the glomerular filtrate by constitutive receptor-mediated endocytosis. In the opossum kidney (OK) renal proximal tubule cell line, inhibition of protein kinase C (PKC) reduces albumin uptake, although the isoforms involved and mechanisms by which this occurs have not been identified. We used pharmacological and molecular approaches to investigate the role of PKC-α in albumin endocytosis. We found that albumin uptake in OK cells was inhibited by the pan-PKC blocker bisindolylmaleimide-1 and the isoform-specific PKC blockers Go-6976 and 2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanol dimethyl ether, indicating a role for PKC-α. Overexpression of a kinase deficient PKC-α(K368R) but not wild-type PKC-α significantly reduced albumin endocytosis. Western blot analysis of fractionated cells showed an increased association of PKC-α-green fluorescent protein with the membrane fraction within 10-20 min of exposure to albumin. We used phalloidin to demonstrate that albumin induces the formation of clusters of actin at the apical surface of OK cells and that these clusters correspond to the location of albumin uptake. These clusters were not present in cells grown in the absence of albumin. In cells treated either with PKC inhibitors or overexpressing kinase-deficient PKC-α(K368R) this actin cluster formation was significantly reduced. This study identifies a role for PKC-α in constitutive albumin uptake in OK cells by mediating assembly of actin microfilaments at the apical membrane.
Resumo:
This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole, (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy ECG simulation when it is used in heart torso model-based body surface potential simulation studies.
Resumo:
The development of fibrosis in the chronically hypertensive heart is associated with infiltration of inflammatory cells and cardiac hypertrophy. In this study, an inhibitor of the proinflammatory enzyme, group IIA human secretory phospholipase A(2) (sPLA(2)-IIA), has been found to prevent collagen deposition as an important component of cardiovascular remodeling in a rat model of developing chronic hypertension. Daily treatment of young male spontaneously hypertensive rats (SHR) with an sPLA2-IIA inhibitor (KH064, 5-(4-benzyloxyphenyl)-4S-(phenyl-heptanoylamino)-pentanoic acid, 5 mg/kg/day p.o.) prevented increases in the content of perivascular,(SHR 20.6 +/- 0.9%, n = 5; SHR+KH064 14.0 +/- 1.2%, n = 5) and interstitial (SHR 7.9 +/- 0.3%, n = 6; SHR+KH064 5.4 +/- 0.7%, n = 6) collagen in the left ventricle of rat hearts, but did not affect numbers of infiltrating monocytes/macrophages, left ventricular hypertrophy (SHR 2.88 +/- 0.08, n = 12; SHR+KH064 3.09 +/- 0.08 mg/g body weight, n = 9), increased systolic blood pressure, or thoracic aortic responses. This selective antifibrotic activity suggests that sPLA2-IIA may have an important but specific role in cardiac fibrosis, and that its inhibitors could be useful in dissecting molecular pathways leading to fibrotic conditions.
Resumo:
Using immunohistochemistry and RNA analyses we examined the fate of components of a newly identified matrix that develops between granulosa cells (focimatrix, abbreviated from focal intraepithelial matrix) and of the follicular basal lamina in ovulating bovine ovarian follicles. Pre- and postovulatory follicles were generated by treatment with estradiol (Day 1), progesterone (Days 1-10), and prostaglandin analogue (Day 9) with either no further treatment (Group 1, n = 6) and or with 25 mg porcine LH (Day 11, Group 2, n = 8 or Day 10, Group 3, n = 8) and ovariectomy on Day 12 (12-14 hr post LH in Group 2, 38-40.5 hr in Group 3). In the time frame examined no loss of follicular basal lamina laminin chains beta 2 and gamma 1 or nidogen 1 was observed. In the follicular basal lamina collagen type IV alpha 1 and perlecan were present prior to ovulation; after ovulation collagen type IV alpha 1 was discontinuously distributed and perlecan was absent. Versican in the theca interna adjacent to the follicular basal lamina in preovulatory follicles was not observed post ovulation, however, the granulosa cells then showed strong cytoplasmic staining for versican. Expression of versican isoforms V0, V1, and V3 was detected at all stages. Focimatrix was observed in preovulatory follicles. It contained collagen type IV alpha 1, laminins beta 2 and gamma 1, nidogen 1 and perlecan and underwent changes in composition similar to that of the follicular basal lamina. In conclusion focimatrix and the follicular basal lamina are degraded at ovulation. Individual components are lost at different times.
Resumo:
Intraventricular dyssynchrony has prognostic implications in patients who have severe functional limitation and decreased ejection fraction. Patients with less advanced cardiac disease often exhibit intraventricular dyssynchrony, but there is little available information about its prognostic relevance in such patients. We investigated the prognostic effect of intraventricular dyssynchrony on outcome in 318 patients with known or suspected coronary artery disease who were classified according to the presence or absence of left ventricular dysfunction and heart failure symptoms. Mortality was considered the primary end point over a median follow-up of 56 months, and a Cox proportional hazards model was used for survival analysis. Despite a low prevalence (8%) of left bundle branch block, there was a high prevalence of intraventricular dyssynchrony even in patients without symptomatic heart failure. The magnitude of intraventricular dyssynchrony correlated poorly with QRS duration (r = 0.25),end-systolic volume index (r = 0.27), and number of scar segments (r = 0.25). There,were 58 deaths during follow-up. Ventricular volume, ischemic burden, and magnitude of intraventricular dyssynchrony predicted outcome, but magnitude of intraventricular dyssynchrony was an independent predictor of survival only in patients with asymptomatic left ventricular dysfunction. In conclusion, patients with known or suspected coronary artery disease have a high prevalence of intraventricular dyssynchrony. Although ventricular volume, ischemic burden, and intraventricular dyssynchrony are potentially important prognostic markers, the relative importance of intraventricular dyssynchrony changes with the clinical setting and, may be greatest-in patients with preclinical disease. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Objective: To estimate the prevalence of heart failure (HF) and left ventricular (LV) systolic dysfunction in a population-based sample of older Australians. Design, setting and participants: A cross-sectional survey of 2000 randomly selected residents of Canberra, aged 60-86 years, conducted between February 2002 and June 2003. Participants were assessed by history, physical examination by a cardiologist, and echocardiography. Main outcome measures: Age- and sex-specific prevalence rates of clinical HF and LV systolic dysfunction (defined as LV ejection fraction
Resumo:
Objective: To determine the prevalence and predictors of left ventricular (LV) diastolic dysfunction in older adults. Design, setting and participants: A cross-sectional survey of 1275 randomly selected residents of Canberra, aged 60 to 86 years (mean age 69.4; 50% men), conducted between February 2002 and June 2003. Main outcome measures: Prevalence of LV diastolic dysfunction as characterised by comprehensive Doppler echocardiography. Results: The prevalence of any diastolic dysfunction was 34.7% (95% CI 32.1% to 37.4%) and that of moderate to severe diastolic dysfunction was 7.3% (95% CI 5.9% to 8.9%). Of subjects with moderate to severe diastolic dysfunction, 77.4% had an LV ejection fraction (EF) > 50% and 76.3% were in a preclinical stage of disease. Predictors of diastolic dysfunction were higher age (p < 0.0001), reduced EF (p < 0.0001), obesity (p < 0.0001) and a history of hypertension (p < 0.0001), diabetes (p = 0.02) and myocardial infarction (p = 0.003). Moderate to severe diastolic dysfunction with normal EF, although predominantly preclinical, was independently associated with increased LV mass (p < 0.0001), left atrial volume (p < 0.0001), and circulating amino-terminal pro-B-type natriuretic peptide concentrations (p < 0.0001), and with decreased quality of life (p < 0.005). Conclusion: Diastolic dysfunction is common in the community and often unaccompanied by overt congestive heart failure. Despite the lack of symptoms, advanced diastolic dysfunction with normal EF is associated with reduced quality of life and structural abnormalities that reflect increased cardiovascular risk.
Resumo:
OBJECTIVES The purpose of this research was to identify the determinants of right ventricular (RV) dysfunction in overweight and obese subjects. BACKGROUND Right ventricular dysfunction in obese subjects is usually ascribed to comorbid diseases, especially obstructive sleep apnea. We used tissue Doppler imaging to identify the determinants of RV dysfunction in overweight and obese subjects. METHODS Standard and tissue Doppler echocardiography was performed in 112 overweight (body mass index [BMI] 25 to 29.9 kg/m(2)) or obese (BMI >30 kg/m(1)) subjects and 36 referents (BMI 35 kg/m(2) had reduced RV function compared with referent subjects, evidenced by reduced s(m) (6.5 +/- 2.4 cm/s vs. 10.2 +/- 1.5 cm/s, p < 0.001), peak strain (-21 +/- 4% vs. -28 +/- 4%, p < 0.001), peak strain rate (-1.4 +/- 0.4 s(-1) vs. -2.0 +/- 0.5 s(-1), p < 0.001), and e(m) (6.8 +/- 2.4 cm/s vs. -10.3 +/- 2.5 cm/s, p < 0.001), irrespective of the presence of sleep apnea. Similar but lesser degrees of reduced systolic function (p < 0.05) were present in overweight (BMI 25 to 29.9 kg/m(2)) and mildly obese (BMI 30 to 35 kg/m(2)) groups. Differences in RV e(m), s(m), and strain indexes were demonstrated between the severely versus overweight and mildly obese groups (p < 0.05). Body mass index remained independently related to RV changes after adjusting for age, log insulin, and mean arterial pressures. In obese patients, these changes were associated with reduced exercise capacity but not the duration of obesity and presence of sleep apnea or its severity. CONCLUSIONS Increasing BMI is associated with increasing severity of RV dysfunction in overweight and obese subjects without overt heart disease, independent of sleep apnea.
Resumo:
Vitamin D acts through the immature osteoblast to stimulate osteoclastogenesis. Transgenic elevation of VDR in mature osteoblasts was found to inhibit osteoclastogenesis associated with an altered OPG response. This inhibition was confined to cancellous bone. This study indicates that vitamin D-mediated osteoclastogenesis is regulated locally by OPG production in the mature osteoblast.