45 resultados para VACCINE CANDIDATE
Resumo:
Primary vaccine strategies against group A streptococci (GAS) have focused on the M protein-the target of opsonic antibodies important for protective immunity. We have previously reported protection of mice against GAS infection following parenteral delivery of a multi-epitope vaccine construct, referred to as a heteropolymer. This current report has assessed mucosal (intranasal (i.n.) and oral) delivery of the heteropolymer in mice with regard to the induction and specificity of mucosal and systemic antibody responses, and compared this to parenteral delivery. GAS-specific IgA responses were detected in saliva and gut upon i.n. and oral delivery of the heteropolymer co-administered with cholera toxin B subunit, respectively. High titre serum IgG responses were elicited to the heteropolymer following all routes of delivery when administered with adjuvant. Moreover, as with parenteral delivery, serum IgG antibodies were detected to the individual heteropolymer peptides following i.n. but not oral delivery. These data support the potential of the i.n. route in the mucosal delivery of a GAS vaccine. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The development of a malaria vaccine seems to be a definite possibility despite the fact that even individuals with a life time of endemic exposure do not develop sterile immunity. An effective malaria vaccine would be invaluable in preventing malaria-associated deaths in endemic areas, especially amongst children less than 5 years of age and pregnant women. This review discusses our current understanding of immunity against the asexual blood stage of malaria - the stage that is responsible for the symptoms of the disease - and approaches to the design of an asexual blood stage vaccine.
Resumo:
No Abstract
Resumo:
This study describes the categorical classification of 155 individuals living in an endemic village in Macanip, Leyte, Philippines as 'resistant' or 'susceptible' to Schistosoma japonicum infection using available exposure, infection and reinfection data collected from a 3-year water contact (WC) study. Epidemiological parameters including age, sex, and infection intensities in relation to observed reinfection patterns are also described. This classification was used in subsequent immunological studies described in two accompanying papers to identify protective immune mechanisms among resistant individuals induced by defined candidate vaccine molecules for S. japonicum. The study suggests that individuals who were most vulnerable to rapid reinfection were children belonging to the 5-14 age group. A drop in incidence at age group 15-19 and decreased intensity of infection starting at this age group and older (15+) suggests development of immunity. Controlling for the effect of the other variables, a multivariate analysis showed significant association for sex, in that females were more likely to be resistant. This implies that other than acquired immunity to infection, some age-dependent host factors may also play an important role in the overall changes of reinfection patterns seen in schistosomiasis japonica in this population. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Several schemes have been developed to help select the locations of marine reserves. All of them combine social, economic, and biological criteria, and few offer any guidance as to how to prioritize among the criteria identified. This can imply that the relative weights given to different criteria are unimportant. Where two sites are of equal value ecologically; then socioeconomic criteria should dominate the choice of which should be protected. However, in many cases, socioeconomic criteria are given equal or greater weight than ecological considerations in the choice of sites. This can lead to selection of reserves with little biological value that fail to meet many of the desired objectives. To avoid such a possibility, we develop a series of criteria that allow preliminary evaluation of candidate sites according to their relative biological values in advance of the application of socioeconomic criteria. We include criteria that,. while not strictly biological, have a strong influence on the species present or ecological processes. Out scheme enables sites to be assessed according to their biodiversity, the processes which underpin that diversity, and the processes that support fisheries and provide a spectrum of other services important to people. Criteria that capture biodiversity values include biogeographic representation, habitat representation and heterogeneity, and presence of species or populations of special interest (e.g., threatened species). Criteria that capture sustainability of biodiversity and fishery values include the size of reserves necessary to protect viable habitats, presence of exploitable species, vulnerable life stages, connectivity among reserves, links among ecosystems, and provision of ecosystem services to people. Criteria measuring human and natural threats enable candidate sites to be eliminated from consideration if risks are too great, but also help prioritize among sites where threats can be mitigated by protection. While our criteria can be applied to the design of reserve networks, they also enable choice of single reserves to be made in the context of the attributes of existing protected areas. The overall goal of our scheme is to promote the development of reserve networks that will maintain biodiversity and ecosystem functioning at large scales. The values of eco-system goods and services for people ultimately depend on meeting this objective.
Resumo:
We have previously demonstrated the ability of the vaccine vectors based on replicon RNA of the Australian flavivirus Kunjin (KUN) to induce protective antiviral and anticancer CD8(+) T-cell responses using murine polyepitope as a model immunogen (I. Anraku, T. J. Harvey, R. Linedale, J. Gardner, D. Harrich, A. Suhrbier, and A. A. Khromykh, J. Virol. 76:3791-3799, 2002). Here we showed that immunization of BALB/c mice with KUN replicons encoding HIV-1 Gag antigen resulted in induction of both Gag-specific antibody and protective Gag-specific CD8(+) T-cell responses. Two immunizations with KUNgag replicons in the form of virus-like particles (VLPs) induced anti-Gag antibodies with titers of greater than or equal to1:10,000. Immunization with KUNgag replicons delivered as plasmid DNA, naked RNA, or VLPs induced potent Gag-specific CD8(+) T-cell responses, with one immunization of KUNgag VLPs inducing 4.5-fold-more CD8(+) T cells than the number induced after immunization with recombinant vaccinia virus carrying the gag gene (rVVgag). Two immunizations with KUNgag VLPs also provided significant protection against challenge with rVVgag. Importantly, KUN replicon VLP vaccinations induced long-lasting immune responses with CD8(+) T cells able to secrete gamma interferon and to mediate protection 6 to 10 months after immunization. These results illustrate the potential value of the KUN replicon vectors for human immunodeficiency virus vaccine design.
Resumo:
A plasmid DNA directing transcription of the infectious full-length RNA genome of Kunjin (KUN) virus in vivo from a mammalian expression promoter was used to vaccinate mice intramuscularly. The KUN viral cDNA encoded in the plasmid contained the mutation in the NS1 protein (Pro-250 to Leu) previously shown to attenuate KUN virus in weanling mice. KUN virus was isolated from the blood of immunized mice 3-4 days after DNA inoculation, demonstrating that infectious RNA was being transcribed in vivo; however, no symptoms of virus-induced disease were observed. By 19 days postimmunization, neutralizing antibody was detected in the serum of immunized animals. On challenge with lethal doses of the virulent New York strain of West Nile (WN) or wild-type KUN virus intracerebrally or intraperitoneally, mice immunized with as little as 0.1-1 mug of KUN plasmid DNA were solidly protected against disease. This finding correlated with neutralization data in vitro showing that serum from KUN DNA-immunized mice neutralized KUN and WN,viruses with similar efficiencies. The results demonstrate that delivery of an attenuated but replicating KUN virus via a plasmid DNA vector may provide an effective vaccination strategy against virulent strains of WN virus.
Resumo:
Due to their spatial structure virus-like particles (VLPs) generally induce effective immune responses. VLPs derived from the small envelope protein (HBsAg-S) of hepatitis B virus (HBV) comprise the HBV vaccine. Modified HBsAs-S VLPs, carrying the immunodominant hypervariable region (HVR1) of the hepatitis C virus (HCV) envelope protein E2 within the exposed 'a'-determinant region (HBsAg/HVR1-VLPs), elicited HVR1-specific antibodies in mice. A high percentage of the human population is positive for anti-HBsAg antibodies (anti-HBs), either through vaccination or natural infection. We, therefore, determined if pre-existing anti-HBs could influence immunisation with modified VLPs. Mice were immunised with a commercial HBV vaccine, monitored to ensure an anti-HBs response, then immunised with HBsAg/HVR1-VLPs. The resulting anti-HVR1 antibody titre was similar in mice with or without pre-existing anti-HBs. This suggests that HBsAg/HVR1-VLPs induce a primary immune response to HVR1 in anti-HBs positive mice and, hence, they may be used successfully in individuals already immunised with the HBV vaccine. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Development of an epitope-based vaccination strategy designed to enhance Epstein-Barr virus (EBV)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is increasingly being considered as a preferred approach for the treatment of EBV-associated relapsed Hodgkin disease (HD) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane proteins, LMP1 and LMP2, are the only target antigens available for therapeutic augmentation of CTL responses in patients with HD and NPC. Here, we describe preclinical studies using a recombinant poxvirus vaccine that encodes a polyepitope protein comprising 6 HLA A2-restricted epitopes derived from LMP1. Human cells infected with this recombinant polyepitope construct were efficiently recognized by LM1-specific CTL lines from HLAA2 healthy individuals. Furthermore, immunization of HLrA A2/K-b mice with this polyepitope vaccine consistently generated strong LMP1 -specific CTL responses to 5 of the. 6 epitopes, which were readily detected by both ex vivo and in vitro assays. More important, this polyepitope vaccine successfully reversed the outgrowth of LMP1-expressing tumors in HLA A2/Kb mice. These studies provide an important platform for the development of an LMP-based polyepitope vaccine as an immunotherapeutic tool for the treatment of EBV-associated HD and NPC. (C) 2003 by The American Society of Hematology.
Resumo:
A molecular approach was used to investigate a recently described candidate division of the domain Bacteria, TM7, currently known only from environmental 16S ribosomal DNA sequence data, A number of TM7-specific primers and probes were designed and evaluated. Fluorescence in situ hybridization (FISH) of a laboratory scale bioreactor using two independent TM7-specific probes revealed a conspicuous sheathed-filament morphotype, fortuitously enriched in the reactor. Morphologically, the filament matched the description of the Eikelboom morphotype 0041-0675 widely associated with bulking problems in activated-sludge wastewater treatment systems. Transmission electron microscopy of the bioreactor sludge demonstrated that the sheathed-filament morphotype had a typical gram-positive cell envelope ultrastructure. Therefore, TM7 is only the third bacterial lineage recognized to have gram-positive representatives. TM7-specific FISH analysis of two full-scale wastewater treatment plant sludges, including the one used to seed the laboratory scale reactor, indicated the presence of a number of morphotypes, including sheathed filaments. TM7-specific PCR clone libraries prepared from the two full-scale sludges yielded 23 novel TM7 sequences. Three subdivisions could be defined based on these data and publicly available sequences. Environmental sequence data and TM7-specific FISH analysis indicate that members of the TM7 division are present in a variety of terrestrial, aquatic, and clinical habitats. A highly atypical base substitution (Escherichia coli position 912; C to U) for bacterial 16S rRNAs was present in almost all TM7 sequences, suggesting that TM7 bacteria, like Archaea, may be streptomycin resistant at the ribosome level.
Resumo:
Candidate prophylactic vaccines based on papillomavirus L1 virus-like particles (VLPs) are currently in human clinical trials. The main long-term goal of the vaccine is to reduce the incidence of cervical cancer and its precursors. In animal papillomavirus models, systemic immunization with L1 VLPs can induce high titers of neutralizing antibodies that confer protection against high-dose experimental papillomavirus challenge. In humans, systemic vaccination with L1 VLPs has been well tolerated and induced high serum antibody titers (at least 40 times higher than titers seen following natural infection). A recent proof of principle HPV16 L1 VLP efficacy trial has shown excellent protection against persistent HPV16 infection and associated cytological abnormalities. Large scale efficacy trials of L1 VLPs from HPV16 and 18 (the HPV types found most frequently in cervical cancer), with or without HPV6 and 11 (the HPV types responsible for most genital warts), are planned. If the results of these large trials support the encouraging results of the early trials, they should lead to a commercial prophylactic HPV vaccine. Implementation issues may include how to make the vaccine available in the developing world, where the majority of cervical cancer cases occur, the appropriate age of vaccination, and the role of male vaccination. Because a VLP vaccine is likely to provide type-specific protection, increasing the number of cancer-associated HPV types in the vaccine is a likely approach to broadening the protection to additional types. There will probably also be efforts to develop alternative vaccine formulations better suited to implementation in developing countries as well as attempts to develop vaccines with a therapeutic activity against established HPV infection because a combined prophylactic/therapeutic vaccine may be expected to have an even greater impact than a purely prophylactic vaccine on HPV induced disease.