78 resultados para Uv excitations
Resumo:
Our group have recently proposed that low prenatal vitamin D may be a risk-modifying factor for schizophrenia. Climate variability impacts on vitamin D levels in a population via fluctuations in the amount of available UV radiation. In order to explore this hypothesis, we examined fluctuations in the birthrates for people with schizophrenia born between 1920 and 1967 and three sets of variables strongly associated with UV radiation. These included: (a) the Southern Oscillation Index (SOI), a marker of El Nino which is the most prominent meteorological factor that influences Queensland weather: (b) measures of cloud cover and (c) measures of sunshine. Schizophrenia births were extracted from the Queensland Mental Health register and corrected for background population birth rates. Schizophrenia birth rates had several apparently non-random features in common with the SO1. The prominent SO1 fluctuation event that occurred between 1937 and 1943 is congruent with the most prominent fluctuation in schizophrenia birth rates. The relatively flat profile of SOI activity between 1927 and 1936 also corresponds to the flattest period in the schizophrenia time series. Both time series have prominent oscillations in the 3 ~, year range between 1946 and 1960. Significant associations between schizophrenia birth rates and measures of both sunshine and cloud cover were identified,and all three time series shared periodicity in the 3-4 year range. The analyses suggest that the risk of schizophrenia is higher for those born during times of increased cloud cover,reduced sunshine and positive SO1. These ecological analyses provide initial support for the vitamin D hypothesis, however alternative non-genetic candidate exposures also need to be considered. Other sites with year-to-year fluctuations in cloud cover and sunshine should examine patterns of association between these climate variables and schizophrenia birth rates. The Stanley Foundation supported this project.
Resumo:
Bright coloration and complex visual displays are frequent and well described in many lizard families. Reflectance spectrometry which extends into the ultraviolet (UV) allows measurement of such coloration independent of our visual system. We examined the role of colour in signalling and mate choice in the agamid lizard Ctenophorus ornatus. We found that throat reflectance strongly contrasted against the granite background of the lizards' habitat. The throat may act as a signal via the head-bobbing and push-up displays of C. ornatus. Dorsal coloration provided camouflage against the granite background, particularly in females. C. ornatus was sexually dichromatic for all traits examined including throat UV reflectance which is beyond human visual perception. Female throats were highly variable in spectral reflectance and males preferred females with higher throat chroma between 370 and 400 nm. However, female throat UV chroma is strongly correlated to both throat brightness and chest UV chroma and males may choose females on a combination of these colour variables. There was no evidence that female throat or chest coloration was an indicator of female quality. However, female brightness significantly predicted a female's laying date and, thus, may signal receptivity. One function of visual display in this species appears to be intersexual signalling, resulting in male choice of females.
Resumo:
The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling is calculated. Dynamical mean-held theory, which maps the Hubbard model onto a single impurity,Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value ha/e(2) (where a is a lattice constant) associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.
Resumo:
The Green Fluorescent Protein (GFP) from Aequorea victor-in has begun to be used as a reporter protein in plants. It is particularly useful as GFP fluorescence can be detected in a non-destructive manner, whereas detection of enzyme-based reporters often requires destruction of the plant tissue. The use of GFP as a reporter enables transgenic plant tissues to be screened in vivo at any growth stage. Quantification of GFP in transgenic plant extracts will increase the utility of GFP as a reporter protein. We report herein the quantification of a mGFP5-ER Variant in tobacco leaf extracts by UV excitation and a sGFP(S65T) variant in sugarcane leaf and callus extracts by blue light excitation using the BioRad VersaFluor(TM) Fluorometer System or the Labsystems Fluoroskan Ascent FL equipped with a narrow band emission filter (510 +/- 5 nm). The GFP concentration in transgenic plant extracts was determined from a GFP-standard series prepared in untransformed plant extract with concentrations ranging from 0.1 to 4 mu g/ml of purified rGFP. Levels of sgfp(S65T) expression, driven by the maize ubiquitin promoter, in sugarcane calli and leaves ranged up to 0.525 mu g and 2.11 mu g sGFP(S65T) per mg of extractable protein respectively. In tobacco leaves the expression of mgfPS-ER, driven by the cauliflower mosaic virus (CaMV) 35S promoter, ranged up to 7.05 mu g mGFP5-ER per mg extractable protein.
Resumo:
A variety of adhesive support-films were tested for their ability to adhere various biological specimens for transmission electron microscopy. Support films primed with 3-amino-propyl triethoxy silane (APTES), poly-L-lysine, carbon and ultraviolet-B (UV-B)-irradiated carbon were tested for their ability to adhere a variety of biological specimens including axenic cultures of Bacillus subtilis and Escherichia coli and wild-type magnetotactic bacteria. The effects of UV-B irradiation on the support film in the presence of air and electrostatic charge on primer deposition were tested and the stability of adhered specimens on various surfaces was also compared. APTES-primed UV-B-irradiated Pioloform(TM) was consistently the best adhesive, especially for large cells, and when adhered specimens were UV-B irradiated they became remarkably stable under an electron beam. This assisted the acquisition of in situ phase-contrast lattice images from a variety of biominerals in magnetotactic bacteria, in particular metastable greigite magnetosomes. Washing tests indicated that specimens adhering to APTES-primed UV-B-irradiated Pioloform(TM) were covalently coupled. The electron beam stability was hypothesised to be the result of mechanical strengthening of the specimen and support film and the reduced electrical resistance in the specimen and support film due to their polymerization and covalent coupling.
Resumo:
A model for a spin-1/2 ladder system with two legs is introduced. It is demonstrated that this model is solvable via the Bethe ansatz method for arbitrary values of the rung coupling J. This is achieved by a suitable mapping from the Hubbard model with appropriate twisted boundary conditions. We determine that a phase transition between gapped and gapless spin excitations occurs at the critical value J(c) = 1/2 of the rung coupling.
Resumo:
Members of the billfish family are highly visual predatory teleosts inhabiting the open ocean. Little is known about their visual abilities in detail, but past studies have indicated that these fishes were:ere likely to be monochromats. This study however, presents evidence of two anatomically distinct cone types in billfish. The cells are arranged in a regular mosaic pattern of single and twin cones as in many fishes, and this arrangement suggests that the different cone types also show different spectral sensitivity, which is the basis for colour vision. First measurements using microspectrophotometry (MSP) revealed a peak absorption of the rod pigment at 484 nm, indicating that MSP, despite technical difficulties, will be a decisive tool in proving colour vision in these offshore fishes. When hunting, billfish such as the sailfish flash bright blue bars on their sides. This colour reflects largely in ultraviolet (UV) light at 350 nm as revealed by spectrophotometric measurements. Billfish lenses block light of wavelengths below 400 nm, presumably rendering the animal blind to the UV component of its own body colour. Interestingly at least two prey species of billfish have lenses transmitting light in the UV waveband and are therefore likely to perceive a large fraction of the UV peak found in the blue bar of the sailfish. The possible biological significance of this finding is discussed.
Resumo:
Wrasses (Labridae) are the second largest family of fishes on the: Great Barrier Reef (after the Gobiidae) and, in terms of morphology and lifestyle, one of the most diverse. They occupy all zones of the reef from the very shadow reef flats to deep slopes, feeding on a variety of fauna. Many wrasses also have elaborately patterned bodies and reflect a range of colours from ultraviolet (UV) to far red. As a first step to investigating the visual system of these fishes we measured the transmission properties of the ocular media of 36 species from the Great Barrier Reef, Australia, and Hawaii, California and the Florida Keys, USA. Transmission measurements were made of whole eyes with a window cut into the back, and also of isolated lenses and corneas. Based on the transmission properties of the corneas the species could be split into two distinct groups within which the exact wavelength of the cut-off was variable. One group had visibly yellow corneas, while the corneas of the other group appeared clear to human observers. Five species had ocular media that transmitted wavelengths below 400 nm, making a perception of UV wavelengths for those species possible. Possible functional roles for the different filler types are discussed.
Resumo:
Pimelic acid formation for biotin biosynthesis in Bacillus subtilis has been proposed to involve a cytochrome P450 encoded by the gene biol. We have subcloned bioI and overexpressed the encoded protein, BioI. A purification protocol was developed utilizing ion exchange, gel filtration, and hydroxyapatite chromatography, Investigation of the purified BioI by UV-visible spectroscopy revealed spectral properties characteristic of a cytochrome P450 enzyme. BioI copurifies with acylated Escherichia coil acyl carrier protein (ACP), suggesting that in vivo a fatty acid substrate may be presented to BioI as an acyl-ACP. A combination of electrospray mass spectrometry of the intact acyl-ACP and GCMS indicated a range of fatty acids were bound to the ACP. A catalytically active system has been established employing E. coli flavodoxin reductase and a novel, heterologous flavodoxin as the redox partners for BioI. In this system, BioI cleaves a carbon-carbon bond of an acyl-ACP to generate a pimeloyl-ACP equivalent, from which pimelic acid is isolated after base-catalyzed saponification. A range of free fatty acids have also been explored as potential alternative substrates for BioI, with C16 binding most tightly to the enzyme. These fatty acids are also metabolized to dicarboxylic acids, but with less regiospecificity than is observed with acyl-ACPs. A possible mechanism for this transformation is discussed. These results strongly support the proposed role for BioI in biotin biosynthesis. In addition, the production of pimeloyl-ACP explains the ability of BioI to function as a pimeloyl CoA source in E. coli, which, unlike B. subtilis, is unable to utilize free pimelic acid for biotin production. (C) 2000 Academic Press.
Resumo:
Two integrable quantum spin ladder systems will be introduced associated with the fundamental su(2 \2) solution of the Yang-Baxter equation. The first model is a generalized quantum Ising system with Ising rung interactions. In the second model the addition of extra interactions allows us to impose Heisenberg rung interactions without violating integrability. The existence of a Bethe ansatz solution for both models allows us to investigate the elementary excitations for antiferromagnetic rung couplings. We find that the first model does not show a gap whilst in the second case there is a gap for all positive values of the rung coupling.
Resumo:
Heterogeneous copper catalyst was developed using the mesoporous molecular sieve MCM-41 as the catalyst support. Copper was impregnated onto the support. Catalysts with different copper loadings were obtained. The performance of the developed catalysts was evaluated in photochemically enhanced oxidation of phenol using hydrogen peroxide as the oxidant. The catalyst was found to significantly increase the oxidation rate and enhance the removal level of phenol with UV light present. The effects of copper loading on the catalyst, photo (UV), H2O2 concentration, and catalyst dosage on the photo-oxidation of phenol were studied. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We measure the spectral properties of a representative sub-sample of 187 quasars, drawn from the Parkes Half-Jansky, Flat-radio-spectrum Sample (PHFS). Quasars with a wide range of rest-frame optical/UV continuum slopes are included in the analysis: their colours range over 2 < B-K < 7. We present composite spectra of red and blue sub-samples of the PHFS quasars. and tabulate their emission line properties. The median Hbeta and [0 111] emission line equivalent widths of the red quasar sub-sample are a factor of ten weaker than those of the blue quasar sub-sample. No significant differences are seen between the equivalent width distributions of the C IV, C III] and Mg 11 lines. Both the colours and the emission line equivalent widths of the red quasars can be explained by the addition of a featureless red synchrotron continuum component to an otherwise normal blue quasar spectrum. The red synchrotron component must have a spectrum at least as red as a power-law of the form F-nu proportional to nu(-2.8). The relative strengths of the blue and red components span two orders of magnitude at rest-frame 500 nm. The blue component is weaker relative to the red component in low optical luminosity sources. This suggests that the fraction of accretion energy going into optical emission from the jet is greater in low luminosity quasars. This correlation between colour and luminosity may be of use in cosmological distance scale work. This synchrotron model does not, however, fit similar to10% of the quasars, which have both red colours and high equivalent width emission lines. We hypothesise that these red, strong-lined quasars have intrinsically weak Big Blue Bumps. There is no discontinuity in spectral properties between the BL Lac objects in our sample and the other quasars. BL Lac objects appear to be the red, low equivalent width tail of a continuous distribution. The synchrotron emission component only dominates the spectrum at longer wavelengths, so existing BL Lac surveys will be biased against high redshift objects. This will affect measurements of BL Lac evolution. The blue PHFS quasars have significantly higher equivalent width C IV, Hbeta and [0 111] emission than a matched sample of optically selected QSOs.
Resumo:
This study characterized the ability of a new member of the p35 family, p49, to inhibit a number of mammalian and insect caspases. p49 blocked apoptosis triggered by treatment with Fas ligand (FasL), Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or ultraviolet (UV) radiation but provided negligible protection against apoptosis induced by the chemotherapeutic drug cisplatin. The caspase cleavage site in p49 was determined, and mutation of the 131 residue of this site abolished the ability of p49 to inhibit caspases, implying that p49 inhibits caspases through an analogous suicide-substrate mechanism to p35. Unlike p35, p49 inhibited the upstream insect caspase DRONC.
Resumo:
Yeast cells were used as a model system to study the inter-relationship among free radicals, antioxidants and UV-induced cell damage. In particular, the effects of UV-radiation in newly isolated yeasts from the Antarctic have been studied.
Resumo:
Functional expression cloning strategies are highly suitable for the analysis of the molecular control of apoptosis. This approach has two critical advantages. Firstly, it eliminates prior assumptions about the properties of the proteins involved, and, secondly, it selectively targets proteins that are causally involved in apoptosis control and which affect the crucial cellular decision between survival and death. The application of this strategy to the isolation of cDNAs conferring resistance to dexamethasone and gamma-irradiation resulted in the isolation of a partial cDNA for the catalytic subunit of protein phosphatase 4 (PP4). Cells transfected with this partial cDNA in an expression vector downregulated PP4 and were resistant to both dexamethasone and UV radiation, as demonstrated by both membrane integrity and colony-forming assays. These observations suggest that PP4 plays an important proapoptotic role in T lymphocytes.