97 resultados para Tubule Morphogenesis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-wall mechanical properties play an integral part in the growth and form of Saccharomyces cerevisiae, In contrast to the tremendous knowledge on the genetics of S. cerevisiae, almost nothing is known about its mechanical properties. We have developed a micromanipulation technique to measure the force required to burst single cells and have recently established a mathematical model to extract the mechanical properties of the cell wall from such data, Here we determine the average surface modulus of the S, cerevisiae cell wall to be 11.1 +/- 0.6 N/m and 12.9 +/- 0.7 N/m in exponential and stationary phases, respectively, giving corresponding Young's moduli of 112 +/- 6 MPa and 107 +/- 6 MPa, This result demonstrates that yeast cell populations strengthen as they enter stationary phase by increasing wall thickness and hence the surface modulus, without altering the average elastic properties of the cell-wall material. We also determined the average breaking strain of the cell wall to be 82% +/- 3% in exponential phase and 80% +/- 3% in stationary phase, This finding provides a failure criterion that can be used to predict when applied stresses (e,g,, because of fluid flow) will lead to wall rupture, This work analyzes yeast compression experiments in different growth phases by using engineering methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the frequency of axillary metastasis in women with tubular carcinoma (TC) of the breast. Women who underwent axillary dissection for TC in the Western Sydney area (1984-1995) were identified retrospectively through a search of computerized records. A centralized pathology review was performed and tumours were classified as pure tubular (22) or mixed tubular (nine), on the basis of the invasive component containing 90 per cent or more, or 75-90 per cent tubule formation respectively. A Medline search of the literature was undertaken to compile a collective series (20 studies with a total of 680 patients) to address the frequency of nodal involvement in TC. A quantitative meta-analysis was used to combine the results of these studies. The overall frequency of nodal metastasis was five of 31 (16 per cent); one of 22 pure tubular and four of nine mixed tumours (P = 0.019). None of the tumours with a diameter of 10 mm or less (n = 16) had nodal metastasis compared with five of 15 larger tumours (P = 0.018). The meta-analysis of 680 women showed an overall frequency of nodal metastasis in TC of 13.8 (95 per cent confidence interval 9.3-18.3) per cent. The frequency of nodal involvement was 6.6 (1.7-11.4) per cent in pure TC (n = 244) and 25.0 (12.5-37.6) per cent in mixed TC (n = 149). A case may be made for observing the clinically negative axilla in women with a small TC (10 mm or less in diameter).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method was developed that allows conversion of changes in maximum Ca2+-dependent fluorescence of a fixed amount of fluo-3 into volume changes of the fluo-3-containing solution. This method was then applied to investigate by confocal microscopy the osmotic properties of the sealed tubular (t-) system of toad and rat mechanically skinned fibers in which a certain amount Of fluo-3 was trapped. When the osmolality of the myoplasmic environment was altered by simple dilution or addition of sucrose within the range 190-638 mosmol kg(-1), the sealed t-system of toad fibers behaved almost like an ideal osmometer, changing its volume inverse proportionally to osmolality However, increasing the osmolality above 638 to 2,550 mosmol kg(-1) caused hardly any change in t-system volume. In myoplasmic solutions made hypotonic to 128 mosmol kg(-1), a loss of Ca2+ from the sealed t-system of toad fibers Occurred, presumably through either stretch-activated cationic channels or store-operated Ca2+ channels. In contrast to the behavior of the t-system in toad fibers, the volume of the sealed t-system of rat fibers changed little (by

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in computer technology have made it possible to create virtual plants by simulating the details of structural development of individual plants. Software has been developed that processes plant models expressed in a special purpose mini-language based on the Lindenmayer system formalism. These models can be extended from their architectural basis to capture plant physiology by integrating them with crop models, which estimate biomass production as a consequence of environmental inputs. Through this process, virtual plants will gain the ability to react to broad environmental conditions, while crop models will gain a visualisation component. This integration requires the resolution of the fundamentally different time scales underlying the approaches. Architectural models are usually based on physiological time; each time step encompasses the same amount of development in the plant, without regard to the passage of real time. In contrast, physiological models are based in real time; the amount of development in a time step is dependent on environmental conditions during the period. This paper provides a background on the plant modelling language, then describes how widely-used concepts of thermal time can be implemented to resolve these time scale differences. The process is illustrated using a case study. (C) 1997 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-level microsatellite instability (AISI-H) is demonstrated in 10 to 15% of sporadic colorectal cancers and in most cancers presenting In the inherited condition hereditary nonpolyposis colorectal cancer (HNPCC). Distinction between these categories of MSI-H cancer is of clinical importance and the aim of this study was to assess clinical, pathological, and molecular features that might he discriminatory. One hundred and twelve MSI-H colorectal cancers from families fulfilling the Bethesda criteria were compared with 57 sporadic MSI-H colorectal cancers. HNPCC cancers presented at a lower age (P < 0.001) with no sporadic MSI-H cancer being diagnosed before the age of 57 years. MSI was less extensive in HNPCC cancers with 72% microsatellite markers showing band shifts compared with 87% in sporadic tumors (P < 0.001). Absent immunostaining for hMSH2 was only found in HNPCC tumors. Methylation of bMLH1 was observed in 87% of sporadic cancers but also in 55% of HNPCC tumors that showed loss of expression of hMLH1 (P = 0.02). HNPCC cancers were more frequently characterized by aberrant beta -catenin immunostaining as evidenced by nuclear positivity (P < 0.001). Aberrant p53 immunostaining was infrequent in both groups. There were no differences with respect to 5q loss of heterozygosity or codon 12 K-ras mutation, which were infrequent in both groups. Sporadic MSI-H cancers were more frequently heterogeneous (P < 0.001), poorly differentiated (P = 0.02), mucinous (P = 0.02), and proximally located (P = 0.04) than RNPCC tumors. In sporadic MSI-H cancers, contiguous adenomas were likely to be serrated whereas traditional adenomas were dominant in HNPCC. Lymphocytic infiltration was more pronounced in HNPCC but the results did not reach statistical significance. Overall, HNPCC cancers were more like common colorectal cancer in terms of morphology and expression of beta -catenin whereas sporadic MSI-H cancers displayed features consistent with a different morphogenesis. No individual feature was discriminatory for all RN-PCC cancers. However, a model based on four features was able to classify 94.5% of tumors as sporadic or HNPCC. The finding of multiple differences between sporadic and familial MSI-H colorectal cancer with respect to both genotype and phenotype is consistent with tumorigenesis through parallel evolutionary pathways and emphasizes the importance of studying the two groups separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Potassium (K) deficiency (KD) and/or hypokalemia have been associated with disturbances of phosphate metabolism The purpose of the present study was to determine the cellular mechanisms that mediate the impairment of renal proximal tubular Na/Pi cotransport in a model of K deficiency in the rat. Methods. K deficiency in the rat was achieved by feeding rats a K-deficient diet for seven days. which resulted in a marked decrease in serum and tissue K content. Results. K deficiency resulted in a marked increase in urinary Pi excretion and a decrease in the V-max of brush-border membrane (BBM) Na/Pi cotransport activity (1943 95 in control vs. 1183 +/- 99 pmol/5 sec/mg BBM protein in K deficiency. P < 0.02). Surprisingly. the decrease in Na/Pi cotransport activity was associated with increases in the abundance of type I (NaPi-1). and type II (NaPi-2) and type III (Glvr-1) Na/Pi protein. The decrease in Na/Pi transport was associated with significant alterations in BBM lipid composition, including increases in sphingomyelin. glucosylceramide. and ganglioside GM, content and a decrease in BBM lipid fluidity. Inhibition of glucosylceramide synthesis resulted in increases in BBM Na/Pi cotransport activity in control and K-deficient rats. The resultant Na/Pi cotransport activity in K-deficit nt rats was the same as in control rats (1148 +/- 52 in control + PDMP vs. 11.52 +/- 61 pmol/5 sec/mg BBM protein in K deficiency + PDMP). These changes in transport activity occurred independent of further changes in BBM NaPi-2 protein or renal cortical NaPi-2 mRNA abundance. Conclusion. K deficiency in the rat causes inhibition of renal Na/Pi cotransport activity by post-translational mechanisms that are mediated in part through alterations in glucosylceramide content and membrane lipid dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nervous system of temnocephalid flatworms consists of the brain and three pairs of longitudinal connectives extending into the trunk and tail. The connectives are crosslinked by an invariant number of regularly spaced commissures. Branches of the connectives innervate the tentacles of the head and the sucker organ in the tail. A set of nerve rings encircling the pharynx and connected to the brain and connectives constitute the pharyngeal nervous system. The nervous system is formed during early embryogenesis when the embryo represents a multilayered mesenchymal mass of cells. Gastrulation and the formation of separate epithelial germ layers that characterize most other animal groups are absent. The brain arises as a bilaterally symmetric condensation of postmitotic cells in the deep layers of the anterior region of the embryonic mesenchyme. The pattern of axon outgrowth, visualized by labeling with anti-acetylated tubulin (acTub) antibody, shows marked differences from the pattern observed in other flatworm taxa. in regard to the number of neurons that express the acTub epitope. Acetylated tubulin is only expressed in neurons that form long axon tracts. In other flatworm species, such as the typhloplanoid Mesostoma and the polyclad Imogine, which were investigated by us with the acTub antibody (Hartenstein and Ehlers [2000] Dev. Genes Evol. 210:399-415; Younossi-Hartenstein and Hartenstein [2000] Dev. Genes Evol. 210:383-398), only a small number of pioneer neurons become acTub positive during the embryonic period. By contrast, in temnocephalids, most, if not all, neurons express acTub and form long, large-diameter axons. Initially, the brain commissure, pharyngeal nerve ring, and the connectives are laid down. Commissural tracts and tentacle nerves branching off the connectives appear later. We speculate that the precocious differentiation of the nervous system may be related to the fact that temnocephalids move by muscle action, and possess a massive and complex muscular system when they hatch. In addition, they have muscular specializations such as the anterior tentacles and the posterior sucker that are used as soon as they hatch. By contrast, juveniles of Mesostoma and larvae of polyclads move predominantly by ciliary action that may not require a complex neural circuitry for coordination. (C) 2001 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila slit is a secreted protein involved in midline patterning. Three vertebrate orthologs of the fly slit gene, Slit1, 2, and 3, have been isolated. Each displays overlapping, but distinct, patterns of expression in the developing vertebrate central nervous system, implying conservation of function. However, vertebrate Slit genes are also expressed in nonneuronal tissues where their cellular locations and functions are unknown. In this study, we characterized the cellular distribution and processing of mammalian Slit3 gene product, the least evolutionarily conserved of the vertebrate Slit genes, in kidney epithelial cells, using both cellular fractionation and immunolabeling. Slit3, but not Slit2, was predominantly localized within the mitochondria. This localization was confirmed using immunoelectron microscopy in cell lines and in mouse kidney proximal tubule cells. In confluent epithelial monolayers, Slit3 was also transported to the cell surface. However, we found no evidence of Slit3 proteolytic processing similar to that seen for Slit2. We demonstrated that Slit3 contains an NH2-terminal mitochondrial localization signal that can direct a reporter green fluorescent protein to the mitochondria. The equivalent region from Slit1 cannot elicit mitochondrial targeting. We conclude that Slit3 protein is targeted to and localized at two distinct sites within epithelial cells: the mitochondria, and then, in more confluent cells, the cell surface. Targeting to both locations is driven by specific NH2-terminal sequences. This is the first examination of Slit protein localization in nonneuronal cells, and this study implies that Slit3 has potentially unique functions not shared by other Slit proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epithelial locomotility is a fundamental determinant of tissue patterning that is subject to strict physiological regulation. The current, study sought to identify cellular signals that initiate cell migration in cultured thyroid epithelial cells. Porcine thyroid cells cultured as 3-dimensional follicles convert to 2-dimensional monolayers when deprived of agents that stimulate cAMP/PKA signaling. This morphogenetic event is driven by the activation of cell-on-substrate locomotility, providing a convenient assay for events that regulate the initiation of locomotion. In this system, the extracellular signal regulated kinase (ERK) pathway became activated as follicles converted to monolayer, as demonstrated by immunoblotting for activation-specific phosphorylation and nuclear accumulation of ERK. Inhibition of ERK activation using the drug PD98059 effectively prevented cells from beginning to migrate. PD98059 inhibited cell spreading, actin filament reorganization and the assembly of focal adhesions, cellular events that mediate the initiation of thyroid cell locomotility. Akt (PKB) signaling was also activated during follicle-to-monolayer conversion and the phosphoinositide 3-kinase (PI3-kinase) inhibitor, wortmannin, also blocked the initiation of cell movement. Wortmannin did not, however, block activation of ERK signaling. These findings, therefore, identify the ERK and PI3-kinase signaling pathways as important stimulators of thyroid cell locomotility. These findings are incorporated into a model where the initiation of thyroid cell motility constitutes a morphogenetic checkpoint regulated by coordinated changes in stimulatory (ERK, PI3-kinase) and tonic inhibitory (cAMP/PKA) signaling pathways. Cell Motil. Cytoskeleton 49:93-103, 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plasma membrane of differentiated skeletal muscle fibers comprises the sarcolemma, the transverse (T) tubule network, and the neuromuscular and muscle-tendon junctions. We analyzed the organization of these domains in relation to defined surface markers, beta -dystroglycan, dystrophin, and caveolin-3, These markers were shown to exhibit highly organized arrays along the length of the fiber. Caveolin-3 and beta -dystroglycan/dystrophin showed distinct, but to some extent overlapping, labeling patterns and both markers left transverse tubule openings clear. This labeling pattern revealed microdomains over the entire plasma membrane with the exception of the neuromuscular and muscle-tendon junctions which formed distinct demarcated macrodomains. Our results suggest that the entire plasma membrane of mature muscle comprises a mosaic of T tubule domains together with sareolemmal caveolae and beta -dystroglycan domains. The domains identified with these markers were examined with respect to targeting of viral proteins and other expressed domain-specific markers, We found that each marker protein was targeted to distinct microdomains, The macrodomains were intensely labeled with all our markers. Replacing the cytoplasmic tail of the vesicular stomatitis virus glycoprotein with that of CD4 resulted in retargeting from one domain to another. The domain-specific protein distribution at the muscle cell surface may be generated by targeting pathways requiring specific sorting information but this trafficking is different from the conventional apical-basolateral division. (C) 2001 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of nitrate, ammonium, and culture medium pH on shoot organogenesis in Nicotiana tabacum zz100 leaf discs was examined. The nitrogen composition of a basal liquid shoot induction medium (SIM) containing 39.4 mM NO3- and 20.6 mM NH4+ was altered whilst maintaining the overall ionic balance with Na+ and Cl- ions. Omission of total nitrogen and nitrate, but not ammonium, from SIM prevented the initiation and formation of shoots. When nitrate was used as the sole source of nitrogen, a high frequency of explants initiated and produced leafy shoots. However, the numbers of shoots produced were significantly fewer than the control SIM. Buffering nitrate-only media with the organic acid 2[N-morpholinol]thanesulphonic acid (MES) could not compensate for the omission of ammonium. Ammonium used as the sole source of nitrogen appeared to have a negative effect on explant growth and morphogenesis, with a significant lowering of media pH. Buffering ammonium-only media with MES stabilized pH and allowed a low frequency of explants to initiate shoot meristems. However, no further differentiation into leafy shoots was observed. The amount of available nitrogen appears to be less important than the ratio between nitrate and ammonium. Shoot formation was achieved with a wide range of ratios, but media containing 40 mM nitrate and 20 mM ammonium (70:30) produced the greatest number of shoots per explant. Results from this study indicate a synergistic effect between ammonium and nitrate on shoot organogenesis independent of culture medium pH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell-cell and cell-matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cell infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell-cell and cell-matrix interactions, while syndecan-2 showed a predilection to associate with cell-matrix interactions during hard tissue formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

POU-IV genes regulate neuronal development in a number of deuterostomes (chordates) and ecdysozoans (arthropods and nematodes). Currently their function and expression in the third bilaterian clade, the Lophotrochozoa, comprising molluscs, annelids and. their affiliates, is unclear. Herein we characterise the developmental expression of HasPOU-IV in the gastropod mollusc, Haliotis asinina. The POU-IV gene is transiently expressed in I I distinct larval territories during the first 3 days of development. HasPOU-IV is first expressed in sets of ventral epidermal cells in the newly hatched trochophore larvae. As larval morphogenesis proceeds, we observe HasPOU-IV transcripts in cells that putatively form a range of sensory systems including chemo- and mechanosensory cells in the foot, cephalic tentacles, the ctenidia. the geosensory statocyst and the eyes. By comparing HasPOU-IV expression with POU-IV genes in other bilaterians we infer that this class of POU-domain genes had an ancestral role in regulating sensory cell development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Eph and ephrin system, consisting of fourteen Eph receptor tyrosine kinase proteins and nine ephrin membrane proteins in vertebrates, has been implicated in the regulation of many critical events during development. Binding of cell surface Eph and ephrin proteins results in bi-directional signals, which regulate the cytoskeletal, adhesive and motile properties of the interacting cells. Through these signals Eph and ephrin proteins are involved in early embryonic cell movements, which establish the germ layers, cell movements involved in formation of tissue boundaries and the pathfinding of axons. This review focuses on two vertebrate models, the zebrafish and mouse, in which experimental perturbation of Eph and/or ephrin expression in vivo have provided important insights into the role and functioning of the Eph/ephrin system.