48 resultados para Tropical Rain-forest
Resumo:
In Mesoamerica, tropical dry forest is a highly threatened habitat, and species endemic to this environment are under extreme pressure. The tree species, Lonchocarpus costaricensis is endemic to the dry northwest of Costa Rica and southwest Nicaragua. It is a locally important species but, as land has been cleared for agriculture, populations have experienced considerable reduction and fragmentation. To assess current levels and distribution of genetic diversity in the species, a combination of chloroplast-specific (cpDNA) and whole genome DNA markers (amplified fragment length polymorphism, AFLP) were used to fingerprint 121 individual trees in 6 populations. Two cpDNA haplotypes were identified, distributed among populations such that populations at the extremes of the distribution showed lowest diversity. A large number (487) of AFLP markers were obtained and indicated that diversity levels were highest in the two coastal populations (Cobano, Matapalo, H = 0.23, 0.28 respectively). Population differentiation was low overall, F-ST = 0.12, although Matapalo was strongly differentiated from all other populations (F-ST = 0.16-0.22), apart from Cobano (F., = 0.11). Spatial genetic structure was present in both datasets at different scales: cpDNA was structured at a range-wide distribution scale, whilst AFLP data revealed genetic neighbourhoods on a population scale. In general, the habitat degradation of recent times appears not to have yet impacted diversity levels in mature populations. However, although no data on seed or saplings were collected, it seems likely that reproductive mechanisms in the species will have been affected by land clearance. It is recommended that efforts should be made to conserve the extant genetic resource base and further research undertaken to investigate diversity levels in the progeny generation.
Resumo:
In Australia more than 300 vertebrates, including 43 insectivorous bat species, depend on hollows in habitat trees for shelter, with many species using a network of multiple trees as roosts, We used roost-switching data on white-striped freetail bats (Tadarida australis; Microchiroptera: Molossidae) to construct a network representation of day roosts in suburban Brisbane, Australia. Bats were caught from a communal roost tree with a roosting group of several hundred individuals and released with transmitters. Each roost used by the bats represented a node in the network, and the movements of bats between roosts formed the links between nodes. Despite differences in gender and reproductive stages, the bats exhibited the same behavior throughout three radiotelemetry periods and over 500 bat days of radio tracking: each roosted in separate roosts, switched roosts very infrequently, and associated with other bats only at the communal roost This network resembled a scale-free network in which the distribution of the number of links from each roost followed a power law. Despite being spread over a large geographic area (> 200 km(2)), each roost was connected to others by less than three links. One roost (the hub or communal roost) defined the architecture of the network because it had the most links. That the network showed scale-free properties has profound implications for the management of the habitat trees of this roosting group. Scale-free networks provide high tolerance against stochastic events such as random roost removals but are susceptible to the selective removal of hub nodes. Network analysis is a useful tool for understanding the structural organization of habitat tree usage and allows the informed judgment of the relative importance of individual trees and hence the derivation of appropriate management decisions, Conservation planners and managers should emphasize the differential importance of habitat trees and think of them as being analogous to vital service centers in human societies.
Resumo:
Geographic variation in vocalizations is widespread in passerine birds, but its origins and maintenance remain unclear. One hypothesis to explain this variation is that it is associated with geographic isolation among populations and therefore should follow a vicariant pattern similar to that typically found in neutral genetic markers. Alternatively, if environmental selection strongly influences vocalizations, then genetic divergence and vocal divergence may be disassociated. This study compared genetic divergence derived from 11 microsatellite markers with a metric of phenotypic divergence derived from male bower advertisement calls. Data were obtained from 16 populations throughout the entire distribution of the satin bowerbird, an Australian wet-forest-restricted passerine. There was no relationship between call divergence and genetic divergence, similar to most other studies on birds with learned vocalizations. Genetic divergence followed a vicariant model of evolution, with the differentiation of isolated populations and isolation-by-distance among continuous populations. Previous work on Ptilonorhynchus violaceus has shown that advertisement call structure is strongly influenced by the acoustic environment of different habitats. Divergence in vocalizations among genetically related populations in different habitats indicates that satin bowerbirds match their vocalizations to the environment in which they live, despite the homogenizing influence of gene flow. In combination with convergence of vocalizations among genetically divergent populations occurring in the same habitat, this shows the overriding importance that habitat-related selection can have on the establishment and maintenance of variation in vocalizations.
Resumo:
We examined factors affecting roost tree selection by the white-striped freetail bat Tadarida australis (Chiroptera: Molossidae), a large insectivorous bat in suburban Brisbane, Australia. We compared biophysical characteristics associated with 34 roost trees and 170 control trees of similar diameter, height and tree senescence characters. Roost trees used by the white-striped freetail bat had significantly higher numbers of hollows in the trunk and branches (P < 0.003) and were more likely to contain a large trunk cavity with an internal diameter of > 30 cm (P < 0.001) than control trees. These trees also accommodated more species of hollow-using fauna (P = 0.005). When comparing roost trees with control trees of similar diameters and heights, roost trees were on average at a later stage of tree senescence (P < 0.001). None of the roost trees were found in the large forest reserves fringing the Brisbane metropolitan area despite these areas being used for foraging by the white-striped freetail bat. Although all tree locations in this study were in modified landscapes, roost trees tended to be surrounded by groups of trees and undergrowth. Roost trees provide important habitat requirements for hollow-using fauna in suburban, rural and forested environments.
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N-2-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6parts per thousand), AM species had mostly intermediate delta(15)N values (average +0.6parts per thousand), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1parts per thousand). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2parts per thousand) and non-mycorrhizal (average +0.8 and +0.3parts per thousand) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N-2 fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4parts per thousand). Soil nitrification and plant NO3- use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO3- using taxa associated with NO3- rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna species. Plants from annually burnt savanna had significantly higher delta(15)N values compared to plants from less frequently burnt savanna, suggesting that foliar N-15 natural abundance could be used as marker for assessing historic fire regimes. Australian woodland and savanna species had low leaf delta(15)N and N content compared to species from equivalent African communities indicating that Australian biota are the more N depauperate. The largest differences in leaf delta(15)N occurred between the dominant ECM Australian and African savanna (miombo) species, which were depleted and enriched in N-15, respectively. While the depleted delta(15)N of Australian ECM species are similar to those of previous reports on ECM species in natural plant communities, the N-15-enriched delta(15)N of African ECM species represent an anomaly.
Resumo:
The current scale of deforestation in tropical regions and the large areas of degraded lands now present underscore the urgent need,for interventions to restore biodiversity, ecological functioning, and the supply of goods and ecological services previously used by poor rural communities. Traditional timber plantations have supplied some goods but have made only minor contributions to fulfilling most of these other objectives. New approaches to reforestation are now emerging, with potential for both overcoming forest degradation and addressing rural poverty.
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
Using Landsat imagery, forest canopy density (FCD) estimated with the FCD Mapper®, was correlated with predominant height (PDH, measured as the average height of the tallest 50 trees per hectare) for 20 field plots measured in native forest at Noosa Heads, south-east Queensland, Australia. A corresponding image was used to calculate FCD in Leyte Island, the Philippines and was validated on the ground for accuracy. The FCD Mapper was produced for the International Tropical Timber Organisation and estimates FCD as an index of canopy density using reflectance characteristics of Landsat Enhanced Thematic (ETM) Mapper images. The FCD Mapper is a ‘semi-expert’ computer program which uses interactive screens to allow the operator to make decisions concerning the classification of land into bare soil, grass and forest. At Noosa, a positive strong nonlinear relationship (r2 = 0.86) was found between FCD and PDH for 15 field plots with variable PDH but complete canopy closure. An additional five field plots were measured in forest with a broken canopy and the software assessed these plots as having a much lower FCD than forest with canopy closure. FCD estimates for forest and agricultural land in the island of Leyte and subsequent field validation showed that at appropriate settings, the FCD Mapper differentiated between tropical rainforest and banana or coconut plantation. These findings suggest that in forests with a closed canopy this remote sensing technique has promise for forest inventory and productivity assessment. The findings also suggest that the software has promise for discriminating between native forest with a complete canopy and forest which has a broken canopy, such as coconut or banana plantation.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).
Resumo:
The drosophilid fauna in Australia offers an important study system for evolutionary studies. Larval hosts are unknown for most species, however, and this imposes serious limits to understanding their ecological context. The present paper reports the first systematic, large-scale field survey of potential larval hosts to be conducted, in order to obtain an overview of the host utilisation patterns of Australian drosophilids. Potential hosts (mostly fruit and fungi) were collected from different vegetation types in northern and eastern Australia. Host data were obtained for 81 drosophilid species from 17 genera (or 28% of the known Fauna). Most genera were restricted to either fruit or fungi, although Scaptodrosophila spp. and Drosophila spp. were recorded from fruit, fungi, flowers and compost, and Drosophila spp. also emerged from the parasitic plant Balanophora fungosa. There was no evidence that use of either fruit or fungi was correlated to host phylogeny. Drosophilids emerged from hosts collected from all sampled vegetation types (rainforest, open forest, heath and domestic environments). Vegetation type influenced drosophilid diversity, both by affecting host availability and because some drosophilid species apparently restricted their search for hosts to particular vegetation types.
Resumo:
We investigated the phylogeography of two closely related Australian frog species from open forest habitats, Limnodynastes tasmaniensis and L. peronii, using mitochondrial ND4 sequence data. Comparison of our results with previous work on Litoria fallax allowed us to test the generality of phylogeographic patterns among non-rainforest anurans along the east coast of Australia. In general, there was no strong evidence for congruence between overall patterns of genetic structure in the three species. However, phylogenetic breaks congruent with the position of the Burdekin Gap were detected at some level in all species. As previously noted for closed forest taxa, this area of dry habitat appears to have been an important influence on the evolution of several open forest taxa. There were broad geographic similarities in the phylogenetic structuring of southern populations of L. peronii and L. tasmaniensis. Contrarily, although the McPherson Range has previously been noted to coincide geographically with a major mtDNA phylogenetic break in Litoria fallax this pattern is not apparent in L. peronii or L. tasmaniensis. It appears that major phylogeographic splits within L. peronii and L. tasmaniensis may predate the Quaternary. We conclude that phylogeographies of open forest frogs are complex and more difficult to predict than for rainforest taxa, mainly due to an absence of palaeomodels for historical distributions of non-rainforest habitats. (C) 2001 The Linnean Society of London.