36 resultados para Transtorno bipolar : Fisiopatologia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antibodies have been generated against two carboxyl-terminal splice variants of the glutamate transporter GLT1, namely, the originally described version of GLT1 and GLT1-B, and labelling has been examined in multiple species, including chickens and humans. Although strong specific labelling was observed in each species, divergent patterns of expression were noted. Moreover, each antibody was sensitive to the phosphorylation state of the appropriate protein, because chemical removal of phosphates using alkaline phosphatase revealed a broader range of labelled elements in most cases. In general, GLT1-B was present in cone photoreceptors and in rod and cone bipolar cells in the retinas of rabbits, rats, and cats. In the cone-dominated retinas of chickens and in marmosets, GLT1-B was associated only with cone photoreceptors, whereas, in macaque and human retinas, GLT1-B was associated with bipolar cells and terminals of photoreceptors. In some species, such as cats, GLT-B was also present in horizontal cells. By contrast, GLT1 distribution varied. GLT1 was associated with amacrine cells in chickens, rats, cats, and rabbits and with bipolar cells in marmosets and macaques. In the rat retina, rod photoreceptor terminals also contained GLT1, but this was evident only in enzymatically dephosphorylated tissues. We conclude that the two variants of GLT1 are present in all species examined but are differentially distributed in a species-specific manner. Moreover, each cell type generally expresses only one splice variant of GLT1. J. Comp. Neurol. 445:1-12, 2002. (C) 2002 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nervous system contains an abundance of taurine, a neuroactive sulfonic acid. Antibodies were generated against two cloned high-affinity taurine transporters, referred to in this study as TAUT-1 and TAUT-2. The distribution of such was compared with the distribution of taurine in the rat brain, pituitary, and retina. The cellular pattern of [H-3] taurine uptake in brain slices, pituitary slices, and retinas was examined by autoradiography. TAUT-2 was predominantly associated with glial cells, including the Bergmann glial cells of the cerebellum and astrocytes in brain areas such as hippocampus. Low-level labeling for TAUT-2 was also observed in some neurones such as CA1 pyramidal cells. TAUT-1 distribution was more limited; in the posterior pituitary TAUT-1 was associated with the pituicytes but was absent from glial cells in the intermediate and anterior lobes. Conversely, in the brain TAUT-1 was associated with cerebellar Purkinje cells and, in the retina, with photoreceptors and bipolar cells. Our data suggest that intracellular taurine levels in glial cells and neurons may be regulated in part by specific high-affinity taurine transporters. The heterogeneous distribution of taurine and its transporters in the brain does not reconcile well with the possibility that taurine acts solely as a ubiquitous osmolyte in nervous tissues. (C) 2002 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquaporin 1 (AQP1; also known as CHIP, a channel-forming integral membrane protein of 28 kDa) is the first protein to be shown to function as a water channel and has been recently shown to be present in the rat retina. We previously showed (Kim et al. [1998] Neurosci Lett 244:52-54) that AQP1-like immunoreactivity is present in a certain population of amacrine cells in the rat retina. This study was conducted to characterize these cells in more detail, With immunocytochemistry using specific antisera against AQP1, whole-mount preparations and 50-mum-thick vibratome sections were examined by light and electron microscopy. These cells were a class of amacrine cells, which had symmetric bistratified dendritic trees ramified in stratum 2 and in the border of strata 3 and 4 of the inner plexiform layer (IPL). Their dendritic field diameters ranged from 90 to 230 mum. Double labeling with antisera against AQP1 and gamma-aminobutyric acid or glycine demonstrated that these AQP1-like-immunoreactive amacrine cells were immunoreactive for glycine. Their most frequent synaptic input was from other amacrine cell processes in both sublaminae a and b of the IPL, followed by a few cone bipolar cells. Their primary targets were other amacrine cells and ganglion cells in both sublaminae a and b of the IPL. In addition, synaptic output Onto bipolar cells was rarely observed in sublamina b of the IPL. Thus, the AQP1 antibody labels a class of glycinergic amacrine cells with small to medium-sized dendritic fields in the rat retina. (C) 2002 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distributions of a carboxyl terminal splice variant of the glutamate transporter GLT-1, referred to as GLT-1B, and the carboxyl terminus of the originally described variant of GLT-1, referred to hereafter as GLT-1alpha, were examined using specific antisera. GLT-1B was present in the retina at very early developmental stages. Labelling was demonstrable at embryonic day 14, and strong labelling was evident by embryonic day 18. Such labelling was initially restricted to populations of cone photoreceptors, the processes of which extended through the entire thickness of the retina and appeared to make contact with the retinal ganglion cells. During postnatal development the GLT-1B-positive photoreceptor processes retracted to form the outer plexiform layer, and around postnatal day 7, GLT-1B-immunoreactive bipolar cells appeared. The pattern of labelling of bipolar cell processes within the inner plexiform layer changed during postnatal development. Two strata of strongly immunoreactive terminals were initially evident in the inner plexiform layer, but by adulthood these two bands were no longer evident and labelling was restricted to the somata and processes (but not synaptic terminals) of the bipolar cells, as well as the somata, processes, and terminals of cone photoreceptors. By contrast, GLT-1alpha appeared late in postnatal development and was restricted mainly to a population of amacrine cells, although transient labelling was also associated with punctate elements in the outer plexiform layer, which may represent photoreceptor terminals, (C) 2002 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Purpose. This study evaluated an electromyographic technique for the measurement of muscle activity of the deep cervical flexor (DCF) muscles. Electromyographic signals were detected from the DCF, sternocleidomastoid (SCM), and anterior scalene (AS) muscles during performance of the craniocervical flexion (CCF) test, which involves performing 5 stages of increasing craniocervical flexion range of motion-the anatomical action of the DCF muscles. Subjects. Ten volunteers without known pathology or impairment participated in this study. Methods. Root-mean-square (RMS) values were calculated for the DCF, SCM, and AS muscles during performance of the CCF test. Myoelectric signals were recorded from the DCF muscles using bipolar electrodes placed over the posterior oropharyngeal wall. Reliability estimates of normalized RMS values were obtained by evaluating intraclass correlation coefficients and the normalized standard error of the mean (SEM). Results. A linear relationship was evident between the amplitude of DCF muscle activity and the incremental stages of the CCF test (F=239.04, df=36, P<.0001). Normalized SEMs in the range 6.7% to 10.3% were obtained for the normalized RMS values for the DCF muscles, providing evidence of reliability for these variables. Discussion and Conclusion. This approach for obtaining a direct measure of the DCF muscles, which differs from those previously used, may be useful for the examination of these muscles in future electromyographic applications.

Relevância:

10.00% 10.00%

Publicador: