94 resultados para Transcriptional blockage
Resumo:
We recently established that fibroblast growth factor (FGF)-1 promotes adipogenesis of primary human preadipocytes (phPA). In the current report, we have characterized the adipogenic effects of FGF-1 in phPA and also in a human PA strain derived from an individual with Simpson-Golabi-Behmel syndrome (SGBS PA), which exhibit an intrinsic capacity to differentiate with high efficiency. In further studies, we compared these models with the well-characterized murine 3T3-L1 preadipocyte cell line (3T3-L1 PA). FGF-1 up-regulated the adipogenic program in phPA, with increased expression of peroxisome proliferator-activated receptor-gamma in confluent PA prior to induction of differentiation and increased expression of adipocyte markers during differentiation. Moreover, phPA differentiated in the presence of FGF-1 were more insulin responsive and secreted increased levels of adiponectin. FGF-1 treatment of SGBS PA further enhanced differentiation. For the most part, the adipogenic program in phPA paralleled that observed in 3T3-L1 PA; however, we found no evidence of mitotic clonal expansion in the phPA. Finally, we investigated a role for extracellular regulated kinase 1/2 (ERK 1/2) in adipogenesis of phPA. FGF-1 induced robust phosphorylation of ERK1/2 in early differentiation and inhibition of ERK1/2 activity significantly reduced phPA differentiation. These data suggest that FGF-1 treated phPA represent a valuable in vitro model for the study of adipogenesis and insulin action and indicate that ERK1/2 activation is necessary for human adipogenesis in the absence of mitotic clonal expansion.
Resumo:
The adult mammalian brain maintains populations of neural stem cells within discrete proliferative zones. Understanding of the molecular mechanisms regulating adult neural stem cell function is limited. Here, we show that MYST family histone acetyltransferase Querkopf (Qkf, Myst4, Morf)-deficient mice have cumulative defects in adult neurogenesis in vivo, resulting in declining numbers of olfactory bulb interneurons, a population of neurons produced in large numbers during adulthood. Qkf-deficient mice have fewer neural stem cells and fewer migrating neuroblasts in the rostral migratory stream. Qkf gene expression is strong in the neurogenic subventricular zone. A population enriched in multipotent cells can be isolated from this region on the basis of Qkf gene expression. Neural stem cells/progenitor cells isolated from Qkf mutant mice exhibited a reduced self-renewal capacity and a reduced ability to produce differentiated neurons. Together, our data show that Qkf is essential for normal adult neurogenesis.
Resumo:
We have evaluated T-DNA mediated plant promoter tagging, with a left-border-linked promoterless firefly luciferase (luc) construct, as a strategy for the isolation of novel plant promoters. In a population of approximately 300 transformed tobacco plants, IO lines showed LUC activity, including novel tissue-specific and developmental patterns of expression. One line, showing LUC activity only in the shoot and root apical meristems, was further characterised. Inverse PCR was used to amplify a 1.5 kb fragment of plant DNA flanking the single-copy T-DNA insertion in this line. With the exception of a 249 bp highly repetitive element, this sequence is present as a single copy in the tobacco genome, and is not homologous to any previously characterised DNA sequences. Sequence analysis revealed the presence of several motifs that may be involved in transcriptional regulation. Transgenic tobacco plants transformed with a transcriptional fusion of this putative promoter sequence to the beta-glucuronidase (uidA) reporter gene, showed GUS activity confined to the shoot tip and mature pollen. This promoter may be useful to direct the expression of genes controlling the transition to flowering, or genes to reduce losses due to pests and stresses damaging plant apical meristems.
Resumo:
The murine homologue of the TFEC was cloned as part of an analysis of the expression of the microphthalmia-TFE (MiT) subfamily of transcription factors in macrophages. TFEC, which most likely acts as a transcriptional repressor in heterodimers with other MiT family members, was identified in cells of the mononuclear phagocyte lineage, coexpressed,vith all other known MiT subfamily members (Mitf, TFE3, TFEB), Northern blot analysis of several different cell lineages indicated that the expression of murine TFEC (mTFEC) was restricted to macrophages. A 600-bp fragment of the TATA-less putative proximal promoter of TFEC shares features with many known macrophage-specific promoters and preferentially directs luciferase expression in the RAW264.7 macrophage cell line in transient transfection assays. Five of six putative Ets motifs identified in the TFEC promoter bind the macrophage-restricted transcription factor PU,I under in vitro conditions and in transfected 3T3 fibroblasts; the minimal luciferase activity of the TFEC promoter could be induced by coexpression of PU.1 or the related transcription factor Ets-2. The functional importance of the tissue-restricted expression of TFEC and a possible role in macrophage-specific gene regulation require further investigation, but are likely to be linked to the role of the other MiT family members in this lineage.
Resumo:
Background: IL-5 controls development of eosinophilia and has been shown to be involved in the pathogenesis of allergic diseases. In both atopic and nonatopic asthma, elevated IL-5 has been detected in peripheral blood and the airways. IL-5 is produced mainly by activated T cells, and its expression is regulated at the transcriptional level. Objective: This study focuses on the functional analysis of the human IL-5 (hIL-5) promoter and characterization of eis-regulatory elements and transcription factors involved in the suppression of IL-5 transcription in T cells. Methods: Methods used in this study include DNase I footprint assays, electrophoretic mobility shift assays, and functional analysis by mammalian cell transfection involving deletion analysis and site-directed mutagenesis. Results: We identified 5 protein binding regions (BRs) located within the proximal hIL-5 promoter. Functional analysis indicates that the BRs are involved in control of hIL-5 promoter activity. Two of these regions, BR3 and BR4 located at positions -102 to -73, have not previously been described as regulators of IL-5 expression in T cells. We show that the BR3 sequence contains a novel negative regulatory element located at positions -90 to -79 of the hIL-5 promoter, which binds Oct1, octamer-like, and YY1 nuclear factors. Substitution mutations, which abolished binding of these proteins to the BR3 sequence, significantly increased hIL-5 promoter activity in activated T cells. Conclusion: We suggest that Oct1, YY1, and octamer-like factors binding to the -90/-79 sequence within the proximal IL-5 promoter are involved in suppression of IL-5 transcription in T cells.
Resumo:
Chemokines are important mediators of the early inflammatory response to infection and modify a wide range of host immune responses. Functional homologs of cellular chemokines have been identified in a number of herpesviruses, suggesting that the subversion of the host chemokine response contributes to the pathogenesis of these viruses. Transcriptional and reverse transcription-PCR analyses demonstrated that the murine cytomegalovirus (MCMV) chemokine homolog, m131, was spliced at the 3' end to the adjacent downstream open reading frame, m129, resulting in a predicted product of 31 kDa, which is significantly larger than most known chemokines. The in vivo impact of m131/129 was investigated by comparing the replication of MCMV mutants having m131/129 deleted (Delta m131/129) with that of wild-type (wt) MCMV. Our studies demonstrate that both wt and Delta m131/129 viruses replicated to equivalent levels during the first 2 to 3 days following in vivo infection. However, histological studies demonstrated that the early inflammatory response elicited by Delta m131/129 was reduced compared with that of wt MCMV. Furthermore, the Delta m131/129 mutants failed to establish a high-titer infection in the salivary glands, These results suggest that m131/129 possesses proinflammatory properties in vivo and is important for the dissemination of MCMV to or infection of the salivary gland. Notably, the Delta m131/129 mutants were cleared more rapidly from the spleen and liver during acute infection compared with wt MCMV. The accelerated clearance of the mutants was dependent on NK cells and cells of the CD4(+) CD8(+) phenotype. These data suggest that m131/129 may also contribute to virus mechanisms of immune system evasion during early infection, possibly through the interference of NK cells and T cells.
Resumo:
Objective. Differentiated dendritic cells (DC) and other antigen-presenting cells are characterized by the nuclear location of RelB, a member of the nuclear factor kappa B/Rel family. To characterize and enumerate differentiated DC in rheumatoid arthritis (RA) peripheral blood (PB), synovial fluid (SF), and synovial tissue (ST), the expression and location of RelB were examined. Methods. RelB protein expression and cellular location were determined in RA PB, SF, and ST by flow cytometry and immunohistochemical analysis of purified cells or formalin-fixed tissue. DNA-binding activity of RelB was determined by electrophoretic: mobility shift-Western immunoblotting assays. Results. Circulating RA PBDC resembled normal immature PBDC in that they did not express intracellular RelB protein. In RA ST serial sections, cells containing nuclear RelB (nRelB) were enriched in perivascular regions. A mean +/- SD of 84 +/- 10% of these cells were DC. The remaining nRelB+,HLA-DR+ cells comprised B cells and macrophages. Only 3% of sorted SFDC contained nRelB, However, RelB present in the nucleus of these SFDC was capable of binding DNA, and therefore capable of transcriptional activity. Conclusion. Circulating DC precursors differentiate and express RelB after entry into rheumatoid ST. Differentiated DC can thus be identified by immunohistochemistry in formalin-fixed ST. Signals for DC maturation may differ between RA ST and SF, resulting in nuclear location of RelB predominantly in ST. This is likely to have functional consequences for the DC in these sites.
Resumo:
Dun1p and Rad53p of the budding yeast Saccharomyces cerevisiae are members of a conserved family of cell cycle checkpoint protein kinases that contain forkhead-associated (FHA) domains. Here, we demonstrate that these FHA domains contain 130-140 residues, and are thus considerably larger than previously predicted by sequence comparisons (55-75 residues), In vivo, expression of the proteolytically defined Dun1p FHA domain, but not a fragment containing only the predicted domain boundaries, inhibited the transcriptional induction of repair genes following replication blocks, This indicates that the non-catalytic FI-IA domain plays an important role in the transcriptional function of the Dun1p protein kinase. (C) 2000 Federation of European Biochemical Societies.
Resumo:
The immunophilins, cyclophilin 40 (CyP40) and FKBP52, are associated with the unactivated estrogen receptor in mutually exclusive heterocomplexes and may differentially modulate receptor activity, We have recently shown that CyP40 and FKBP52 mRNA's are differentially elevated in breast carcinomas compared with normal breast tissue. Other studies suggest that such alterations ill the ratio of immunophilins might potentially influence steroid receptor function. Studies were therefore initiated to investigate the influence of estradiol on CyP40 and FKBP52 expression in MCF-7 breast cancer cells. Over a 24-h-treatment period with estradiol, CyP40 and FKBP52 mRNA expression was increased approximately five- and 14-fold, respectively. The corresponding protein levels were also elevated in comparison to controls. The antiestrogen, ICI 182,780, was an antagonist for CyP40 and FKBP52 mRNA induction. Cycloheximide treatment did not inhibit this increased immunophilin expression, suggesting that estradiol-mediated activation is independent off de novo protein synthesis. Treatment of MCF-7 cells with estradiol resulted in an increased half-life of both CyP40 and FKBP52 mRNA, as determined by actinomycin D studies. These results suggest that estradiol regulates CyP40 and FKBP52 mRNA expression through both transcriptional and posttranscriptional mechanisms. (C) 2001 Academic Press.
Resumo:
The Cotesia rubecula polydnavirus gene, CrV1, is expressed in a highly transient fashion. Within four hours after egg deposition and virus infection, tissues of the host caterpillar, Pieris rapae, express high levels of the transcript. Twelve hours after infection no transcripts are visible. We have previously shown that the CrV1 secreted protein is mainly produced in host haemocytes. In haemocytes, immune functions such as phagocytosis and cell spreading are abolished by destabilization of the cell cytoskeleton. To test whether the observed down-regulation of CrV1 transcripts is mediated by transcriptional control or by other factors, such as the disruption of cytoskeleton in CrV1-inactivated cells, we cloned the promoter and the 3' untranslated region of the CrV1 gene to study CrV1 expression. The promoter region of the CrV1 gene was cloned into baculovirus expression systems along with the CAT reporter gene. Molecular analyses showed that the CAT gene under the control of CrV1 promoter is expressed as early as 2 h post infection and continues until late phase of infection suggesting that down-regulation of CrV1 expression in host haemocytes is perhaps mediated by post-transcriptional mechanisms.