44 resultados para Thermodynamics of polymer Blends


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins are designed to function in environments crowded by cosolutes, but most studies of protein equilibria are conducted in dilute solution. While there is no doubt that crowding changes protein equilibria, interpretations of the changes remain controversial. This review combines experimental observations on the effect of small uncharged cosolutes (mostly sugars) on protein stability with a discussion of the thermodynamics of cosolute-induced nonideality and critical assessments of the most commonly applied interpretations. Despite the controversy surrounding the most appropriate manner for interpreting these effects of thermodynamic nonideality arising from the presence of small cosolutes, experimental advantage may still be taken of the ability of the cosolute effect to promote not only protein stabilization but also protein self-association and complex formation between dissimilar reactants. This phenomenon clearly has potential ramifications in the cell, where the crowded environment could well induce the same effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the experimental results on the slagging propensity of three pairs of blended coals tested in the Australian Coal Industry Research Laboratory furnace. The results showed that none of the coals or blends produced strongly molten deposit. At worst, the deposits contained some moderately sintered material. Most of the blends have (slightly) worse slagging behavior than the component coals. In order to rank the slagging propensity numerically, we defined the minimum heat flux ratio and total heat flux ratio based on the heat flux profiles. They are better in ranking the slagging propensities than other measures such as the build-up rate and visual physical characteristics. The Fe2O3/CaO molar ratio correlates the slagging propensity for five coals and six blends of this study. The worst slagging occurs when the ratio approaches 1.0. This ratio provides explanation of why the blends had worse slagging than the component coals for the pairs of blends: A-B and C-D. However, we note that there are causes of slagging other than the Fe2O3/CaO molar ratio. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exact description of the thermodynamics of solutions has been used to describe, without approximation, the distribution of all the components of an incompressible solution in a centrifuge cell at sedimentation equilibrium. Thermodynamic parameters describing the interactions between solute components of known molar mass can be obtained by direct analysis of the experimental data. Interpretation of the measured thermodynamic parameters in terms of molecular interactions requires that an arbitrary distinction be made between nonassociative forces, like hard-sphere volume-exclusion and mean-field electrostatic repulsion or attraction, and specific short-range forces of association that give rise to the formation of molecular aggregates. Provided the former can be accounted for adequately, the effects of the latter can be elucidated in the form of good estimates of the equilibrium constants for the reactions of aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasonic absorption in polymer gel dosimeters was investigated. An ultrasonic interferometer was used to study the frequency (f) dependence of the absorption coefficient (alpha) in a polyacrylamide gel dosimeter (PAG) in the frequency range 5-20 MHz. The frequency dependence of ultrasonic absorption deviated from that of an ideal viscous fluid. The presence of relaxation mechanisms was evidenced by the frequency dependence of alpha/f(2) and the dispersion in ultrasonic velocity. It was concluded that absorption in polymer gel dosimeters is due to a number of relaxation processes which may include polymer-solvent interactions as well as relaxation due to motion of polymer side groups. The dependence of ultrasonic absorption on absorbed dose and formulation was also investigated in polymer gel dosimeters as a function of pH and chemical composition. Changes in dosimeter pH and chemical composition resulted in a variation in ultrasonic dose response curves. The observed dependence on pH was considered to be due to pH induced modifications in the radiation yield while changes in chemical composition resulted in differences in polymerisation kinetics. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyethylcyanoacrylate (PECA) nanoparticles were prepared by interfacial polymerization of a water-in-oil microemulsion. Nanoparticles were isolated from the polymerization template by sequential ethanol washing and centrifugation. A nanocapsule preparation yielding the original particle size and distribution following redispersion in an aqueous solution was achieved by freeze-drying the isolated nanoparticles in a solution of 5% w/v sugar. The cytotoxicity and uptake of nanocapsules by dendritic cells was investigated using a murine-derived cell line (D1). PECA nanoparticles were found to adversely effect cell viability at concentrations greater than 10 mug/ml of polymer in the culture medium. In comparison to antigen in solution, cell uptake of antigen encapsulated within nanoparticles was significantly higher at both 4 and 37 degreesC. Following a 24 h incubation period, the percentage of cells taking-up antigen was also increased when antigen was encapsulated in nanoparticles as compared to antigen in solution. The uptake of nanoparticles and the effect of antigen formulation on morphological cell changes indicative of cell maturation were also investigated by scanning electron microscopy (SEM). SEM clearly demonstrated the adherence of nanoparticles to the cell surface. Incubation of D1 dendritic cells with nanoparticles containing antigen also resulted in morphological changes indicative of cell maturation similar to that observed when the cells were incubated with lipopolysaccharide. In contrast, cells incubated with antigen solution did not demonstrate such morphological changes and appeared similar to immature cells that had not been exposed to antigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In liquid-liquid dispersion systems, the dynamic change of the interfacial properties between the two immiscible liquids plays an important role in both the emulsification process and emulsion stabilization. In this paper, experimentally measured dynamic interfacial tensions of 1-chlorobutane in the aqueous solutions of various random copolymers of polyvinyl acetate and polyvinyl alcohol (PVAA) are presented. Theoretical analyses on these results suggest that the adsorption of the polymer molecules is controlled neither by the bulk diffusion process nor the activation energy barrier for the adsorption but the conformation of polymer molecules. Based on the concept of critical concentration of condensation for polymer adsorption, as well as the observation that the rate at which the dynamic interfacial tension changes does not correlate to the PVAA's ability to stabilize a single drop, it is postulated that the main stabilization mechanism for the PVAAs is by steric hindrance, not the Gibbs-Marangoni effect offered by the small molecule surfactants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the interfacial interactions between the nanofiller and polymer matrix is important to improve the design and manufacture of polymer nanocomposites. This paper reports a molecular dynamic Study on the interfacial interactions and structure of a clay-based polyurethane intercalated nanocomposite. The results show that the intercalation of surfactant (i.e. dioctadecyldlmethyl ammonium) and polyurethane (PU) into the nanoconfined gallery of clay leads to the multilayer structure for both surfactant and PU, and the absence of phase separation for PU chains. Such structural characteristics are attributed to the result of competitive interactions among the surfactant, PU and the clay surface, including van der Waals, electrostatic and hydrogen bonding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal degradation of high density polyethylene has been modelled by the random breakage of polymer bonds, using a set of population balance equations. A model was proposed in which the population balances were lumped into representative sizes so that the experimentally determined molecular weight distribution of the original polymer could be used as the initial condition. This model was then compared to two different cases of the unlumped population balance which assumed unimolecular initial distributions of 100 and 500 monomer units, respectively. The model that utilised the experimentally determined molecular weight distribution was found to best describe the experimental data. The model fits suggested a second mechanism in addition to random breakage at slow reaction rates. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement of protein-polymer second virial coefficients (B-AP) by sedimentation equilibrium studies of carbonic anhydrase and cytochrome c in the presence of dextrans (T10-T80) has revealed an inverse dependence of B-AP upon dextran molecular mass that conforms well with the behaviour predicted for the excluded-volume interaction between a spherical protein solute A and a random-flight representation of the polymeric cosolute P. That model of the protein-polymer interaction is also shown to provide a reasonable description of published gel chromatographic and equilibrium dialysis data on the effect of polymer molecular mass on BAP for human serum albumin in the presence of polyethylene glycols, a contrary finding from analysis of albumin solubility measurements being rejected on theoretical grounds. Inverse dependence upon polymer chainlength is also the predicted excluded-volume effect on the strength of several types of macromolecular equilibria-protein isomerization, protein dimerization, and 1 : 1 complex formation between dissimilar protein reactants. It is therefore concluded that published experimental observations of the reverse dependence, preferential reaction enhancement within DNA replication complexes by larger polyethylene glycols, must reflect the consequences of cosolute chemical interactions that outweigh those of thermodynamic nonideality arising from excluded-volume effects. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By carefully controlling the concentration of alpha,omega-thiol polystyrene in solution, we achieved formation of unique monocyclic polystyrene chains (i.e., polymer chains with only one disulfide linkage). The presence of cyclic polystyrene was confirmed by its lower than expected molecular weight due to a lower hydrodynamic volume and loss of thiol groups as detected by using Ellman's reagent. The alpha,omega-thiol polystyrene was synthesized by polymerizing styrene in the presence of a difunctional RAFT agent and subsequent conversion of the dithioester end groups to thiols via the addition of hexylamine. Oxidation gave either monocyclic polymer chains (i.e., with only one disulfide linkage) or linear multiblock polymers with many disulfide linkages depending on the concentration of polymer used with greater chance of cyclization in more dilute solutions. At high polymer concentrations, linear multiblock polymers were formed. To control the MWD of these linear multiblocks, monofunctional X-PSTY (X = PhCH2C(S)-S-) was added. It was found that the greatest ratio of X-PSTY to X-PSTY-X resulted in a low M-n and PDI. We have shown that we can control both the structure and MWD using this chemistry, but more importantly such disulfide linkages can be readily reduced back to the starting polystyrene with thiol end groups, which has potential use for a recyclable polymer material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The LCST transitions of novel N-isopropylacrylamide ( NIPAM) star polymers, prepared using the four-armed RAFT agent pentaerythritoltetrakis(3-(S-benzyltrithiocarbonyl) propionate) (PTBTP) and their hydrolyzed linear arms were studied using H-1 NMR, PFG-NMR, and DLS. The aim was to determine the effect of polymer architecture and the presence of end groups derived from RAFT agents on the LCST. The LCST transitions of star PNIPAM were significantly depressed by the presence of the hydrophobic star core and possibly the benzyl end groups. The effect was molecular weight dependent and diminished once the number of repeating units per arm >= 70. The linear PNIPAM exhibited an LCST of 35 degrees C, regardless of molecular weight; the presence of both hydrophilic and hydrophobic end groups after hydrolysis from the star core was suggested to cancel effects on the LCST. A significant decrease in R-H was observed below the LCST for star and linear PNIPAM and was attributed to the formation of n-clusters. Application of a scaling law to the linear PNIPAM data indicated the cluster size n = 6. Tethering to the hydrophobic star core appeared to inhibit n-cluster formation in the lowest molecular weight stars; this may be due to enhanced stretching of the polymer chains, or the presence of larger numbers of n-clusters at temperatures below those measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer processing experiments have been conducted with a twin screw extruder. Different formulations of starch-based nanocomposites are being tested in a pilot scale film blowing tower. The physical properties of different starch-based films have been examined with thermal and mechanical analysis and X-ray diffraction. The results show that the addition of organoclay significantly improves both the processing and tensile properties over the original starch blends. The mechanical and thermal properties of the blends are also sensitive to the scale the clay particles are dispersed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An energy-based swing hammer mill model has been developed for coke oven feed preparation. it comprises a mechanistic power model to determine the dynamic internal recirculation and a perfect mixing mill model with a dual-classification function to mimic the operations of crusher and screen. The model parameters were calibrated using a pilot-scale swing hammer mill at various operating conditions. The effects of the underscreen configurations and the feed sizes on hammer mill operations were demonstrated through the fitted model parameters. Relationships between the model parameters and the machine configurations were established. The model was validated using the independent experimental data of single lithotype coal tests with the same BJD pilot-scale hammer mill and full operation audit data of an industrial hammer mill. The outcome of the energy-based swing hammer mill model is the capability to simulate the impact of changing blends of coal or mill configurations and operating conditions on product size distribution. Alternatively, the model can be used to select the machine settings required to achieve a desired product. (C) 2003 Elsevier Science B.V. All rights reserved.