44 resultados para TIN MONOXIDE MOLECULE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explains and explores the concept of "semantic molecules" in the NSM methodology of semantic analysis. A semantic molecule is a complex lexical meaning which functions as an intermediate unit in the structure of other, more complex concepts. The paper undertakes an overview of different kinds of semantic molecule, showing how they enter into more complex meanings and how they themselves can be explicated. It shows that four levels of "nesting" of molecules within molecules are attested, and it argues that while some molecules such as 'hands' and 'make', may well be language-universal, many others are language-specific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rate expression for enzyme poisoning which are consistent with a Michaelis-Menten main reaction are used to analyze the performance of a fixed bed reactor containing immobilized enzyme. When enzyme deactivation results from the irreversible bonding of a product molecule to an existing substrate-enzyme complex, it is shown that minimum enzyme activity can occur in the interior of the bed, well away from the ends. This suggests that bed sectioning techniques may enable direct evaluation of fundamental poisoning mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-incompatibility RNases (S-RNases) are an allelic series of style glycoproteins associated with rejection of self-pollen in solanaceous plants. The nucleotide sequences of S-RNase alleles from several genera have been determined, but the structure of the gene products has only been described for those from Nicotiana alata. We report on the N-glycan structures and the disulfide bonding of the S-3-RNase from wild tomato (Lycopersicon peruvianum) and use this and other information to construct a model of this molecule. The S-3-RNase has a single N-glycosylation site (Asn-28) to which one of three N-glycans is attached. S-3-RNase has seven Cys residues; six are involved in disulfide linkages (Cys-16-Cys-21, Cys-46-Cys-91, and Cys-166-Cys-177), and one has a free thiol group (Cys-150). The disulfide-bonding pattern is consistent with that observed in RNase Rh, a related RNase for which radiographic-crystallographic information is available. A molecular model of the S-3-RNase shows that four of the most variable regions of the S-RNases are clustered on one surface of the molecule. This is discussed in the context of recent experiments that set out to determine the regions of the S-RNase important for recognition during the self-incompatibility response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermogravimetrically-determined carbon dioxide reactivities of chars formed from New Zealand coals, ranging in rank from lignite to high volatile bituminous, vary from 0.12 to 10.63 mg/h/mg on a dry, ash-free basis. The lowest rank subbituminous coal chars have similar reactivities to the lignite coal chars. Calcium content of the char shows the strongest correlation with reactivity, which increases as the calcium content increases. High calcium per se does not directly imply a high char reactivity. Organically-bound calcium catalyses the conversion of carbon to carbon monoxide in the presence of carbon dioxide, whereas calcium present as discrete minerals in the coal matrix, e.g., calcite, fails to significantly affect reactivity. Catalytic effects of magnesium, iron, sodium and phosphorous are not as obvious, but can be recognised for individual chars. The thermogravimetric technique provides a fast, reliable analysis that is able to distinguish char reactivity differences between coals, which may be due to any of the above effects. Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three possible disulfide bonded isomers of alpha-conotoxin GI have been selectively synthesised and their structures determined by H-1 NMR spectroscopy. alpha-Conotoxin GI derives from the venom of Conus geographus and is a useful neuropharmacological tool as it selectively binds to the nicotinic acetylcholine receptor (nAChR), a ligand-gated ion channel involved in nerve signal transmission. The peptide has the sequence ECCNPACGRHYSC-NH2, and the three disulfide bonded isomers are referred to as GI(2-7;3-13), GI(2-13;3-7) and GI(2-3;7-13). The NMR structure for the native isomer GI(2-7;3-13) is of excellent quality, with a backbone pairwise RMSD of 0.16 Angstrom for a family of 35 structures, and comprises primarily a distorted 3(10),, helix between residues 5 to 11. The two non-native isomers exhibit multiple conformers in solution, with the major populated forms being different in structure both from each other and from the native form. Structure-activity relationships for the native GI(2-7;3-13) as well as the role of the disulfide bonds on folding and stability of the three isomers are examined. It is concluded that the disulfide bonds in alpha-conotoxin GI play a crucial part in determining both the structure and stability of the peptide. A trend for increased conformational heterogeneity was observed in the order of GI(2-7;3-13) < GI(2-13;3-7) < GI(2-3;7-13). It was found that the peptide bond joining Cys2 to Cys3 in GI(2-3;7-13) is predominantly trans, rather than cis as theoretically predicted. These structural data are used to interpret the varying nAChR binding of the non-native forms. A model for the binding of native GI(2-7;3-13) to the mammalian nAChR is proposed, with an alpha-subunit binding face made up of Cys2, Asn4, Pro5, Ala6 and Cys7 and a selectivity face, comprised of Arg9 and His10. These two faces orient the molecule between the alpha and delta subunits of the receptor. The structure of the CCNPAC sequence of the native GI(2-7;3-13) is compared to the structure of the identical sequence from the toxic domain of heat-stable enterotoxins, which forms part of the receptor binding region of the enterotoxins, but which has a different disulfide connectivity. (C) 1998 Academic Press Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficiency of presentation of a peptide epitope by a MHC class I molecule depends on two parameters: its binding to the MHC molecule and its generation by intracellular Ag processing. In contrast to the former parameter, the mechanisms underlying peptide selection in Ag processing are poorly understood. Peptide translocation by the TAP transporter is required for presentation of most epitopes and may modulate peptide supply to MHC class I molecules. To study the role of human TAP for peptide presentation by individual HLA class I molecules, we generated artificial neural networks capable of predicting the affinity of TAP for random sequence 9-mer peptides. Using neural network-based predictions of TAP affinity, we found that peptides eluted from three different HLA class I molecules had higher TAP affinities than control peptides with equal binding affinities for the same HLA class I molecules, suggesting that human TAP may contribute to epitope selection. In simulated TAP binding experiments with 408 HLA class I binding peptides, HLA class I molecules differed significantly with respect to TAP affinities of their ligands, As a result, some class I molecules, especially HLA-B27, may be particularly efficient in presentation of cytosolic peptides with low concentrations, while most class I molecules may predominantly present abundant cytosolic peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary sensory olfactory axons arise from the olfactory neuroepithelium that lines the nasal cavity and then project via the olfactory nerve into the olfactory bulb. The P-galactoside binding lectin, galectin-1,and its laminin ligand have been implicated in the growth of these axons along this pathway. In galectin-1 null mutant mice, a subpopulation of primary sensory olfactory axons fails to reach its targets in the olfactory bulb. In the present study we examined the spatiotemporal expression pattern of galectin-1 in normal mice in order to understand its role in the development of the olfactory nerve pathway. At E15.5, when olfactory axons have already contacted the olfactory bulb, galectin-1 was expressed in the cartilage and mesenchyme surrounding the nasal cavity but was absent from the olfactory neuroepithelium, nerve and bulb. Between E16.5 and birth galectin-1 began to be expressed by olfactory nerve ensheathing cells in the lamina propria of the neuroepithelium and nerve fibre layer. Galectin-1 was neither expressed by primary sensory neurons in the olfactory neuroepithelium nor by their axons in the olfactory nerve. Laminin, a galectin-1 ligand, also exhibited a similar expression pattern in the embryonic olfactory nerve pathway. Our results reveal that galectin-1 is dynamically expressed by glial elements within the nerve fibre layer during a discrete period in the developing olfactory nerve pathway. Previous studies have reported galectin-1 acts as a substrate adhesion molecule by cross-linking primary sensory olfactory neurons to laminin. Thus, the coordinate expression of galectin-1 and laminin in the embryonic nerve fibre layer suggests that these molecules support the adhesion and fasciculation of axons en route to their glomerular targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of the human complement system of plasma proteins in response to infection or injury produces a 4-helix bundle glycoprotein (74 amino acids) known as C5a. C5a binds to G-protein-coupled receptors on cell surfaces triggering receptor-ligand internalization, signal transduction, and powerful inflammatory responses. Since excessive levels of C5a are associated with autoimmune and chronic inflammatory disorders, inhibitors of receptor activation may have therapeutic potential. We now report solution structures and receptor-binding and antagonist activities for some of the first small molecule antagonists of C5a derived from its hexapeptide C terminus. The antagonist NMe-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H (1) surprisingly shows an unusually well-defined solution structure as determined by H-1 NMR spectroscopy. This is one of the smallest acyclic peptides found to possess a defined solution conformation, which can be explained by the constraining role of intramolecular hydrogen bonding. NOE and coupling constant data, slow deuterium exchange, and a low dependence on temperature for the chemical shift of the D-Cha-NH strongly indicate an inverse gamma turn stabilized by a D-Cha-NH ... OC-Lys hydrogen bond. Smaller conformational populations are associated with a hydrogen bond between Trp-NH ... OC-Lys, defining a type II beta turn distorted by the inverse gamma turn incorporated within it. An excellent correlation between receptor-affinity and antagonist activity is indicated for a limited set of synthetic peptides. Conversion of the C-terminal carboxylate of 1 to an amide decreases antagonist potency 5-fold, but potency is increased up to 10-fold over 1 if the amide bond is made between the C-terminal carboxylate and a Lys/Orn side chain to form a cyclic analogue. The solution structure of cycle 6 also shows gamma and beta turns; however, the latter occurs in a different position, and there are clear conformational changes in 6 vs 1 that result in enhanced activity. These results indicate that potent C5a antagonists can be developed by targeting site 2 alone of the C5a receptor and define a novel pharmacophore for developing powerful receptor probes or drug candidates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The macrocyclic compounds (6-(4',6'-diamino-1',3',5'-triazinyl)-1,4,6,8,11-pentaazacyclotetradecane)copper(II) triperchlorate dihydrate, [Cu(HL2)](ClO4)(3). 2H(2)O, (6-(6'-amino-4'-oxo-1'H-1',3',5'-triazinyl)-1,4,6,8,11-pentaazacyclotetradecane)copper(II) diperchlorate hydrate, [CuL3](ClO4)(2). H2O, and [(6-(4',6'-dioxo-1'H-1',3',5'-triazinyl) 1,4,6,8,11-pentaazacyclotetradecane)copper(II)] diperchlorate, [CuL4](ClO4)(2), have been synthesized. The macrocycles synthesized contain respectively pendant melamine, ammeline,and ammelide rings. The X-ray cyrstallographic analyses of [Cu(HL2)](ClO4)(3). 2H(2)O, triclinic, space group P (1) over bar, a = 9.489(10) Angstrom, b = 12.340(2) Angstrom, c = 24.496(4) Angstrom, alpha = 87.74(10)degrees beta = 85.51(10)degrees gamma = 70.95(10)degrees and Z = 4, and {[CuL3](ClO4)(2). H2O}2, monoclinic, space group C2/c, a = 18.624(8) Angstrom, b = 17.160(2) Angstrom, c = 15.998(6) Angstrom, beta = 117.82(2)degrees, and Z = 4, are reported. The structure of [Cu(HL2)](ClO4)(3). 2H(2)O shows the formation of linear tapes, formed by a combination of hydrogen bonds and pi-pi stacking interactions. The structure of [CuL3](ClO4)(2). H2O displays formation of dimers, formed by a coordinate bond from the oxygen in one molecule to the copper atom of another. The tautomeric forms of the ammeline and ammelide moieties have been determined. The potential of these compounds as subunits for cocrystallization has been investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunolabeling is commonly used to localize antigens within frozen or paraffin tissue sections. We modified existing immunolabeling techniques to allow the detection of three antigens simultaneously within the one tissue section. The approach relies on the use of three monoclonal antibodies in sequential immunoperoxidase staining steps, each with colored substrates, resulting in the deposition of black, brown, and rose stains. The method is rapid and does not require novel techniques or materials. In this report, we demonstrate the colocalization of mast cell tryptase, neurofilament protein, and CD31 (platelet-endothelial cell adhesion molecule) or laminin in normal human skin and normal buccal mucosa, as an illustration of the power and simplicity of the multiple antigen localization technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chondroitin sulfate proteoglycans display both inhibitory and stimulatory effects on cell adhesion and neurite outgrowth in vitro. The functional activity of these proteoglycans appears to be context specific and dependent on the presence of different chondroitin sulfate-binding molecules. Little is known about the role of chondroitin sulfate proteoglycans in the growth and guidance of axons in vivo. To address this question, we examined the effects of exogenous soluble chondroitin sulfates on the growth and guidance of axons arising from a subpopulation of neurons in the vertebrate brain which express NOC-2, a novel glycoform of the neural cell adhesion molecule N-CAM. Intact brains of stage 28 Xenopus embryos were unilaterally exposed to medium containing soluble exogenous chondroitin sulfates. When exposed to chondroitin sulfate, NOC-2(+) axons within the tract of the postoptic commissure failed to follow their normal trajectory across the ventral midline via the ventral commissure in the midbrain. Instead, these axons either stalled or grew into the dorsal midbrain or continued growing longitudinally within the ventral longitudinal tract. These findings suggest that chondroitin sulfate proteoglycans indirectly modulate the growth and guidance of a subpopulation of forebrain axons by regulating either matrix-bound or cell surface cues at specific choice points within the developing vertebrate brain. (C) 1998 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystals of recombinant importin alpha, the nuclear-import receptor, have been obtained at two different pH conditions by vapour diffusion using sodium citrate as precipitant and dithiothreitol as an additive. At pH 4-5, the crystals have the symmetry of the trigonal space group P3(1)21 or P3(2)21 (a = b = 78.0, c = 255.8 Angstrom, gamma = 120 degrees); at pH 6-7, the crystals have the symmetry of the orthorhombic space group P2(1)2(1)2(1) (a = 78.5, b = 89.7, c = 100.5 Angstrom). In both cases, there is probably one molecule of importin ct in the asymmetric unit. At least one of the crystal forms diffracts to a resolution higher than 3 Angstrom using the laboratory X-ray source; the crystals are suitable for crystal structure determination.