80 resultados para Substrate boundaries
Resumo:
Three new peptidomimetics (1-3) have been developed with highly stable and conformationally constrained macrocyclic components that replace tripeptide segments of protease substrates. Each compound inhibits both HIV-1 protease and viral replication (HIV-I, HIV-2) at nanomolar concentrations without cytotoxicity to uninfected cells below 10 mu M. Their activities against HIV-1 protease (K-i 1.7 nM (1), 0.6 nM (2), 0.3 nM (3)) are 1-2 orders of magnitude greater than their antiviral potencies against HIV-1-infected primary peripheral blood mononuclear cells (IC50 45 nM (1), 56 nM (2), 95 nM (3)) or HIV-1-infected MT2 cells (IC50 90 nM (1), 60 nM (2)), suggesting suboptimal cellular uptake. However their antiviral potencies are similar to those of indinavir and amprenavir under identical conditions. There were significant differences in their capacities to inhibit the replication of HIV-1 and HIV-2 in infected MT2 cells, 1 being ineffective against HIV-2 while 2 was equally effective against both virus types. Evidence is presented that 1 and 2 inhibit cleavage of the HIV-1 structural protein precursor Pr55(gag) to p24 in virions derived from chronically infected cells, consistent with inhibition of the viral protease in cells. Crystal structures refined to 1.75 Angstrom (1) and 1.85 Angstrom (2) for two of the macrocyclic inhibitors bound to HIV-1 protease establish structural mimicry of the tripeptides that the cycles were designed to imitate. Structural comparisons between protease-bound macrocyclic inhibitors, VX478 (amprenavir), and L-735,524 (indinavir) show that their common acyclic components share the same space in the active site of the enzyme and make identical interactions with enzyme residues. This substrate-mimicking minimalist approach to drug design could have benefits in the context of viral resistance, since mutations which induce inhibitor resistance may also be those which prevent substrate processing.
Resumo:
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serine/threonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Resumo:
Molecular modelling of human CYP1B1 based on homology with the mammalian P450, CYP2C5, of known three-dimensional structure is reported. The enzyme model has been used to investigate the likely mode of binding for selected CYP1B1 substrates, particularly with regard to the possible effects of allelic variants of CYP1B1 on metabolism. In general, it appears that the CYP1B1 model is consistent with known substrate selectivity for the enzyme, and the sites of metabolism can be rationalized in terms of specific contacts with key amino acid residues within the CYP1B1 heme locus. Further-more, a mode of binding interaction for the inhibitor, a-naphthoflavone, is presented which accords with currently available information. The current paper shows that a combination of molecular modelling and experimental determinations on the substrate metabolism for CYP1B1 allelic variants can aid in the understanding of structure-function relationships within P450 enzymes. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Human cytochrome P450 (P450) 2D6 is an important enzyme involved in the metabolism of drugs, many of which are amines or contain other basic nitrogen atoms. Asp301 has generally been considered to be involved in electrostatic docking with the basic substrates, on the basis of previous modeling studies and site-directed mutagenesis. Substitution of Glu216 with a residue other than Asp strongly attenuated the binding of quinidine, bufuralol, and several other P450 2D6 ligands. Catalytic activity with the substrates bufuralol and 4-methoxyphenethylamine was strongly inhibited by neutral or basic mutations at Glu216 (>95%), to the same extent as the substitution of Asn at Asp301. Unlike the Asp301 mutants, the Gln216 mutant (E216Q) retained 40% enzyme efficiency with the substrate spirosulfonamide, devoid of basic nitrogen, suggesting that the substitutions at Glu216 affect binding of amine substrates more than other catalytic steps. Attempts to induce catalytic specificity toward new substrates by substitutions at Asp301 and Glu216 were unsuccessful. Collectively, the results provide evidence for electrostatic interaction of amine substrates with Glu216, and we propose that both of these acidic residues plus at least another residue(s) is (are) involved in binding the repertoire of P450 2D6 ligands.
Resumo:
A lithographic method was used to produce polycrystalline diamond films having highly defined surface geometry, showing an array of diamond tips for possible application as a field emitter device. The films grown in this study used microwave plasma assisted chemical vapour deposition (MACVD) on a silicon substrate; the substrate was then dissolved away to reveal the surface features on the diamond film. It is possible to align the crystallite direction and affect the electron emission properties using a voltage bias to enhance the nucleation process and influence the nuclei to a preferred orientation. This study focuses on the identification of the distribution of crystal directions in the film, using electron backscattering diffraction (EBSD) to identify the crystallographic character of the film surface. EBSD allows direct examination of the individual diamond grains, grains boundaries and the crystal orientation of each individual crystallite. The EBSD maps of the bottom (nucleation side) of the films, following which a layer of film is ion-milled away and the mapping process repeated. The method demonstrates experimentally that oriented nucleation occurs and the thin sections allow the crystal texture to be reconstructed in 3-D. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The XXZ Gaudin model with generic integrable boundaries specified by generic non-diagonal K-matrices is studied. The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The eigenvalues and the corresponding Bethe ansatz equations are obtained. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the last few years, transaction cost economics has become a popular theory within the construction research community. This approach has been singularly applied as a means to explain and predict phenomena concerning the construction firm, including its vertical boundaries. However, this is at a time when the chief proponents of transaction costs are urging researchers to take a pluralistic stance in relation to the theory of the firm. The aim of this paper is to develop a pluralistic approach to the vertical boundaries of the construction firm. In order to achieve this, an integrative framework is described, based on the development of the efficient boundaries problem and the capabilities approach to vertical integration. Specifically, this framework draws on the complementary strengths of transaction cost economics and the resource-based view. It is concluded that the potential relative merits of theoretical pluralism, in terms of the vertical boundaries of the construction firm, are sufficient grounds to motivate empirical testing of the predictions associated with the integrative framework of vertical integration presented
Resumo:
Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to D-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and D-camphor are C-10 monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 Angstrom resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe2S2 redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.
Resumo:
The development of a strong, active granular sludge bed is necessary for optimal operation of upflow anaerobic sludge blanket reactors. The microbial and mechanical structure of the granules may have a strong influence on desirable properties such as growth rate, settling velocity and shear strength. Theories have been proposed for granule microbial structure based on the relative kinetics of substrate degradation, but contradict some observations from both modelling and microscopic studies. In this paper, the structures of four granule types were examined from full-scale UASB reactors, treating wastewater from a cannery, a slaughterhouse, and two breweries. Microbial structure was determined using fluorescence in situ hybridisation probing with 16S rRNA-directed oligonucleotide probes, and superficial structure and microbial density (volume occupied by cells and microbial debris) assessed using scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The granules were also modelled using a distributed parameter biofilm model, with a previously published biochemical model structure, biofilm modelling approach, and model parameters. The model results reflected the trophic structures observed, indicating that the structures were possibly determined by kinetics. Of particular interest were results from simulations of the protein grown granules, which were predicted to have slow growth rates, low microbial density, and no trophic layers, the last two of which were reflected by microscopic observations. The primary cause of this structure, as assessed by modelling, was the particulate nature of the wastewater, and the slow rate of particulate hydrolysis, rather than the presence of proteins in the wastewater. Because solids hydrolysis was rate limiting, soluble substrate concentrations were very low (below Monod half saturation concentration), which caused low growth rates. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
CYP2C9 is distinguished by a preference for substrates bearing a negative charge at physiological pH. Previous studies have suggested that CYP2C9 residues R97 and K72 may play roles in determining preference for anionic substrates by interaction at the active site or in the access channel. The aim of the present study was to assess the role of these two residues in determining substrate selectivity. R97 and K72 were substituted with negative, uncharged polar and hydrophobic residues using a degenerate polymerase chain reaction-directed strategy. Wild-type and mutant enzymes were expressed in bicistronic format with human cytochrome P450 reductase in Escherichia coli. Mutation of R97 led to a loss of holoenzyme expression for R97A, R97V, R97L, R97T, and R97E mutants. Low levels of hemoprotein were detected for R97Q, R97K, R97I, and R97P mutants. Significant apoenzyme was observed, suggesting that heme insertion or protein stability was compromised in R97 mutants. These observations are consistent with a structural role for R97 in addition to any role in substrate binding. By contrast, all K72 mutants examined (K72E, K72Q, K72V, and K72L) could be expressed as hemoprotein at levels comparable to wild-type. Type I binding spectra were obtained with wildtype and K72 mutants using diclofenac and ibuprofen. Mutation of K72 had little or no effect on the interaction with these substrates, arguing against a critical role in determining substrate specificity. Thus, neither residue appears to play a role in determining substrate specificity, but a structural role for R97 can be proposed consistent with recently published crystallographic data for CYP2C9 and CYP2C5.
Resumo:
Recent molecular analyses indicate that many reef coral species belong to hybridizing species complexes or "syngameons." Such complexes consist of numerous genetically distinct-species or lineages, which periodically split and/or fuse as they extend through time. During splitting and fusion, morphologic intermediates form and species overlap. Here we focus on processes associated with lineage fusion, specifically introgressive hybridization, and the recognition of such hybridization in the fossil record. Our approach involves comparing patterns of ecologic and morphologic overlap in genetically characterized modern species with fossil representatives of the same or closely related species. We similarly consider the long-term consequences of past hybridization on the structure of modern-day species boundaries. Our study involves the species complex Montastraea annularis s.l. and is based in the Bahamas, where, unlike other Caribbean locations, two of the three members of the complex today are not genetically distinct. We measured and collected colonies along linear transects across Pleistocene reef terraces of last interglacial age (approximately 125 Ka) on the islands of San Salvador, Andros, and Great Inagua. We performed quantitative ecologic and morphologic analyses of the fossil data, and compared patterns of overlap among species with data from modern localities where species are and are not genetically distinct. Ecologic and morphologic analyses reveal "moderate" overlap (>10%, but statistically significant differences) and sometimes "high" overlap (no statistically significant differences) among Pleistocene growth forms (= "species"). Ecologic analyses show that three species (massive, column, organ-pipe) co-occurred. Although organ-pipes had higher abundances in patch reef environments, columnar and massive species exhibited broad, completely overlapping distributions and had abundances that were not related to reef environment. For morphometric analyses, we used multivariate discriminant analysis on landmark data and linear measurements. The results show that columnar species overlap "moderately" with organ-pipe and massive species. Comparisons with genetically characterized colonies from Panama show that the Pleistocene Bahamas species have intermediate morphologies, and that the observed "moderate" overlap differs from the morphologic separation among the three modern species. In contrast, massive and columnar species from the Pleistocene of the Dominican Republic comprise distinct morphologic clusters, similar to the modern species; organ-pipe species exhibit "low" overlap (
Resumo:
The A(n-1) Gaudin model with integrable boundaries specified by non-diagonal K-matrices is studied. The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The eigenvalues and the corresponding Bethe ansatz equations are obtained. (c) 2005 Elsevier B.V. All rights reserved.