109 resultados para Stimulus and Responses
Resumo:
Latent inhibition, retarded learning after preexposure to the to-be-conditioned stimulus, has been implied as a tool for the investigation of attentional deficits in schizophrenia and related disorders. The present paper reviews research that used Pavlovian conditioning as indexed by autonomic responses (electrodermal, vasomotor, cardiac) to investigate latent inhibition in adult humans. Latent inhibition has been demonstrated repeatedly in healthy subjects in absence of a masking task that is required in other latent inhibition paradigms. Moreover, latent inhibition of Pavlovian conditioning is stimulus-specific and increases with an increased number of preexposure trials which mirrors results from research in animals. A reduction of latent inhibition has been shown in healthy subjects who score high on questionnaire measures of psychosis proneness and in unmedicated schizophrenic patients. The latter result was obtained in a within-subject paradigm that holds promise for research with patient samples. (C) 1997 Elsevier Science B.V.
Resumo:
Spontaneous and tone-evoked changes in light reflectance were recorded from primary auditory cortex (A1) of anesthetized cats (barbiturate induction, ketamine maintenance). Spontaneous 0.1-Hz oscillations of reflectance of 540- and 690-nm light were recorded in quiet. Stimulation with tone pips evoked localized reflectance decreases at 540 nm in 3/10 cats. The distribution of patches activated by tones of different frequencies reflected the known tonotopic organization of auditory cortex. Stimulus-evoked reflectance changes at 690 nm were observed in 9/10 cats but lacked stimulus-dependent topography. In two experiments, stimulus-evoked optical signals at 540 nm were compared with multiunit responses to the same stimuli recorded at multiple sites. A significant correlation (P < 0.05) between magnitude of reflectance decrease and multiunit response strength was evident in only one of five stimulus conditions in each experiment. There was no significant correlation when data were pooled across all stimulus conditions in either experiment. In one experiment, the spatial distribution of activated patches, evident in records of spontaneous activity at 540 nm, was similar to that of patches activated by tonal stimuli. These results suggest that local cerebral blood volume changes reflect the gross tonotopic organization of A1 but are not restricted to the sites of spiking neurons.
Resumo:
Evaluative learning theory states that affective learning, the acquisition of likes and dislikes, is qualitatively different from relational learning, the learning of predictive relationships among stimuli. Three experiments tested the prediction derived from evaluative learning theory that relational learning, but not affective learning, is affected by stimulus competition by comparing performance during two conditional stimuli, one trained in a superconditioning procedure and the other in a blocking procedure. Ratings of unconditional stimulus expectancy and electrodermal responses indicated stimulus competition in relational learning. Evidence for stimulus competition in affective learning was provided by verbal ratings of conditional stimulus pleasantness and by measures of blink startle modulation. Taken together, the present experiments demonstrate stimulus competition in relational and affective learning, a result inconsistent with evaluative learning theory. (C) 2001 Academic Press.
Resumo:
Performance in sprint exercise is determined by the ability to accelerate, the magnitude of maximal velocity and the ability to maintain velocity against the onset of fatigue. These factors are strongly influenced by metabolic and anthropometric components. Improved temporal sequencing of muscle activation and/or improved fast twitch fibre recruitment may contribute to superior sprint performance. Speed of impulse transmission along the motor axon may also have implications on sprint performance. Nerve conduction velocity (NCV) has been shown to increase in response to a period of sprint training. However, it is difficult to determine if increased NCV is likely to contribute to improved sprint performance. An increase in motoneuron excitability, as measured by the Hoffman reflex (H-reflex), has been reported to produce a more powerful muscular contraction, hence maximising motoneuron excitability would be expected to benefit sprint performance. Motoneuron excitability can be raised acutely by an appropriate stimulus with obvious implications for sprint performance. However, at rest reflex has been reported to be lower in athletes trained for explosive events compared with endurance-trained athletes. This may be caused by the relatively high, fast twitch fibre percentage and the consequent high activation thresholds of such motor units in power-trained populations. In contrast, stretch reflexes appear to be enhanced in sprint athletes possibly because of increased muscle spindle sensitivity as a result of sprint training. With muscle in a contracted state, however, there is evidence to suggest greater reflex potentiation among both sprint and resistance-trained populations compared with controls. Again this may be indicative of the predominant types of motor units in these populations, but may also mean an enhanced reflex contribution to force production during running in sprint-trained athletes. Fatigue of neural origin both during and following sprint exercise has implications with respect to optimising training frequency and volume. Research suggests athletes are unable to maintain maximal firing frequencies for the full duration of, for example, a 100m sprint. Fatigue after a single training session may also have a neural manifestation with some athletes unable to voluntarily fully activate muscle or experiencing stretch reflex inhibition after heavy training. This may occur in conjunction with muscle damage. Research investigating the neural influences on sprint performance is limited. Further longitudinal research is necessary to improve our understanding of neural factors that contribute to training-induced improvements in sprint performance.
Resumo:
Latent inhibition (LI) is an important model for understanding cognitive deficits in schizophrenia, Disruption of LI is thought to result from an inability to ignore irrelevant stimuli. The study investigated LI in schizophrenic patients by using Pavlovian conditioning of electrodermal responses in a complete within-subject design. Thirty-two schizophrenic patients, ( 16 acute. unmedicated and 16 medicated patients) and 16 healthy control subjects (matched with respect to age and gender) participated in the study. The experiment consisted of two stages: preexposure and conditioning. During preexposure two visual stimuli were presented, one of which served as the to-be-conditioned stimulus (CSp +) and the other one was the not-to-be-conditioned stimulus (CSp -) during the following conditioning ( = acquisition). During acquisition. two novel visual stimuli (CSn + and CSn -) were introduced. A reaction time task was used as the unconditioned stimulus (US). LI was defined as the difference in response differentiation observed between proexposed and non-preexposed sets of CS + and CS -. During preexposure. the schizophrenic patients did not differ in electrodermal responding from the control subjects, neither concerning the extent of orienting nor the course of habituation. The exposure to novel stimuli at the beginning of the acquisition elicited reduced orienting responses in unmedicated patients compared to medicated patients and control subjects, LI was observed in medicated schizophrenic patients and healthy controls. but not in acute unmedicated patients. Furthermore LI was found to be correlated with the duration of illness: it was attenuated in patients who had suffered their first psychotic episode. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The present research investigated the effect of performance feedback on the modulation of the acoustic startle reflex in a Go/NoGo reaction time task. Experiment 1 (n = 120) crossed warning stimulus modality (acoustic, visual, and tactile) with the provision of feedback in a between subject design. Provision of performance feedback increased the number of errors committed and reduced reaction time, but did not affect blink modulation significantly. Attentional blink latency and magnitude modulation was larger during acoustic than during visual and larger during visual than during tactile warning stimuli. In comparison to control blinks, latency shortening was significant in all modality conditions whereas magnitude facilitation was not significant during tactile warning stimuli. Experiment 2 (n = 80) employed visual warning stimuli only and crossed the provision of feedback with task difficulty. Feedback and difficulty affected accuracy and reaction time. Whereas blink latency shortening was not affected, blink magnitude modulation was smallest in the Easy/No Feedback and the Difficult/Feedback conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The effects of unconditional stimulus (US) valence (aversive electro-tactile stimulus vs. nonaversive imperative stimulus of a RT task) and conditioning paradigm (delay vs. trace) on affective learning as indexed by verbal ratings of conditional stimulus (CS) pleasantness and blink startle modulation and on relational learning as indexed by electrodermal responses were investigated. Affective learning was not affected by the conditioning paradigm; however, electrodermal responses and blink latency shortening indicated delayed learning in the trace procedure. Changes in rated CS pleasantness were found with the aversive US, but not with the non-aversive US. Differential conditioning as indexed by electrodermal responses and startle modulation was found regardless of US valence. The finding of significant differential blink modulation and electrodermal responding in the absence of a change in rated CS pleasantness as a result of conditioning with a non-aversive US was replicated in a second experiment. These results seem to indicate that startle modulation during conditioning is mediated by the arousal level of the anticipated US, rather than by the valence of the CS. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
The behavior and stability of motor units (MUs) in response to electrical stimulation of different intensities can be assessed with the stimulus-response curve, which is a graphical representation of the size of the compound muscle action potential (CMAP) in relation to stimulus intensity. To examine MU characteristics across the whole stimulus range, the variability of CMAP responses to electrical stimulation, and the differences that occur between normal and disease states, the curve was studied in 11 normal subjects and 16 subjects with amyotrophic lateral sclerosis (ALS). In normal subjects, the curve showed a gradual increase in CMAP size with increasing stimulus intensity, although one or two discrete steps were sometimes observed in the upper half of the curve, indicating the activation of large MUs at higher intensities. In ALS subjects, large discrete steps, due to loss of MUs and collateral sprouting, were frequently present. Variability of the CMAP responses was greater than baseline variability, indicating variability of MU responses, and at certain levels this variability was up to 100 mu Vms. The stimulus-response curve shows differences between normal and ALS subjects and provides information on MU activation and variability throughout the curve.
Resumo:
Prepulse inhibition of the blink reflex is widely applied to investigate information processing deficits in schizophrenia and other psychiatric patient groups. The present experiment investigated the hypothesis that prepulse inhibition reflects a transient process that protects preattentive processing of the prepulse. Participants were presented with pairs of blinkeliciting noises, some preceded by a prepulse at a variable stimulus onset asynchrony (SOA), and were asked to rate the intensity of the second noise relative to the first. Inhibition of blink amplitude was greater for a 110-dB (A) noise than for a 95-dB(A) noise with a 120-ms SOA, whereas there was no difference with a 30-ms SOA. The perceived intensity was also lower for the 110-dB(A) noise than for the 95-dB(A) noise with the 120-ms SOA, but not with the 30-ms SOA. The parallel results support a relationship between prepulse inhibition of response amplitude and perceived intensity. However, the prepulse did not reduce intensity ratings relative to control trials in some conditions, suggesting that prepulse inhibition is not always associated with an attenuation of the perceived impact of the blink-eliciting stimulus.
Resumo:
Simultaneous measurements of pulmonary blood flow (qPA), coeliacomesenteric blood flow (qCoA), dorsal aortic blood pressure (PDA), heart rate (fH) and branchial ventilation frequency (fv) were made in the Australian lungfish, /Neoceratodus forsteri, /during air breathing and aquatic hypoxia. The cholinergic and adrenergic influences on the cardiovascular system were investigated during normoxia using pharmacological agents, and the presence of catecholamines and serotonin in different tissues was investigated using histochemistry. Air breathing rarely occurred during normoxia but when it did, it was always associated with increased pulmonary blood flow. The pulmonary vasculature is influenced by both a cholinergic and adrenergic tonus whereas the coeliacomesenteric vasculature is influenced by a β-adrenergic vasodilator mechanism. No adrenergic nerve fibers could be demonstrated in /Neoceratodus /but catecholamine-containing endothelial cells were found in the atrium of the heart. In addition, serotonin-immunoreactive cells were demonstrated in the pulmonary epithelium. The most prominent response to aquatic hypoxia was an increase in gill breathing frequency followed by an increased number of air breaths together with increased pulmonary blood flow. It is clear from the present investigation that /Neoceratodus /is able to match cardiovascular performance to meet the changes in respiration during hypoxia.
Resumo:
The debate about the dynamics and potential policy responses to asset inflation has intensified in recent years. Some analysts, notably Borio and Lowe, have called for 'subtle' changes to existing monetary targeting frameworks to try to deal with the problems of asset inflation and have attempted to developed indicators of financial vulnerability to aid this process. In contrast, this paper argues that the uncertainties involved in understanding financial market developments and their potential impact on the real economy are likely to remain too high to embolden policy makers. The political and institutional risks associated with policy errors are also significant. The fundamental premise that a liberalised financial system is based on 'efficient' market allocation cannot be overlooked. The corollary is that any serious attempt to stabilize financial market outcomes must involve at least a partial reversal of deregulation.
Resumo:
The role of individual viral proteins in the immune response to bluetongue virus (BTV) is not clearly understood. To investigate the contributions of the outer capsid proteins, VP2 and VP5, and possible interactions between them, these proteins were expressed from recombinant vaccinia viruses either as individual proteins or together in double recombinants, or with the core protein VP7 in a triple recombinant. Comparison of the immunogenicity of the vaccinia expressed proteins with BTV expressed proteins was carried out by inoculation of rabbits and sheep. Each of the recombinants was capable of stimulating an anti-BTV antibody response, although there was a wide range in the level of response between animals and species. Vaccinia-expressed VP2 was poorly immunogenic, particularly in rabbits. VP5, on the whole, stimulated higher ELISA titers in rabbits and sheep and in some animals in both species was able to stimulate virus neutralizing antibodies. When the protective efficacy of VP2 and VP5 was tested in sheep, vaccinia-expressed VP2, VP5 and VP2 + VP5 were protective, with the most consistent protection being in groups immunized with both proteins. (C) 1997 Elsevier Science B.V.
Resumo:
The magnitude of a startle reflex is inhibited if the reflex-eliciting stimuli is preceded by a prepulse stimulus at a short lead interval. Previous research in humans has shown that the extent of prepulse inhibition decreases over repeated presentations of reflex stimuli and prepulse-reflex stimulus pairings. The present study (N=70) investigated the effect of repeated presentations of prepulse stimuli, reflex stimuli, or prepulse-reflex stimulus pairings on prepulse inhibition. Five groups of subjects were presented during habituation training with either (a) reflex stimuli, (b) prepulse-reflex stimulus pairings, (c) a random sequence of prepulse and reflex stimuli, (d) prepulse stimuli, or (e) experimentally irrelevant light stimuli. Prepulse inhibition was reduced if startle stimuli were presented during habituation ((a), (b), (c)), but not after repeated presentation of the prepulse or the light stimulus ((d), (e)). The reduction in prepulse inhibition was abolished after dishabituation of the startle reflex. The present results indicate that habituation of the startle reflex can result in a reduction of prepulse inhibition. (C) 1998 Elsevier Science B.V.