63 resultados para Steroids -- metabolism -- pharmacology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfate is required for detoxification of xenobiotics such as acetaminophen (APAP), a leading cause of liver failure in humans. The NaS1 sulfate transporter maintains blood sulfate levels sufficiently high for sulforiation reactions to work effectively for drug detoxification. In the present study, we identified two loss-of-function polymorphisms in the human NaS1 gene and showed the Nas1-null mouse to be hypersensitive to APAP hepatotoxicity. APAP treatment led to increased liver damage and decreased hepatic glutathione levels in the hyposulfatemic Nas1-null mice compared with that in normosulfatemic wild-type mice. Analysis of urinary APAP metabolites revealed a significantly lower ratio of APAP-sulfate to APAP-glucuronide in the Nas1-null mice. These results suggest hyposulfatemia increases sensitivity to APAP-induced hepatotoxicity by decreasing the sulfonation capacity to metabolize APAP. In conclusion, the results of this study highlight the importance of plasma sulfate level as a key modulator of acetaminophen metabolism and suggest that individuals with reduced NaS1 sulfate transporter function would be more sensitive to hepatotoxic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O-Acyl esters were prepared from salicylic acid and diflunisal by esterification with the appropriate acyl anhydride (in the presence of sulfuric acid at 80 degrees C) or acyl chloride (in the presence of pyridine at 0 degrees C). Synthesis, identification and characterization of these compounds is described. In vitro hydrolysis, solubility and protein binding studies of these O-acyl esters were performed. For the diflunisal esters, the melting points fell as the side chain was increased from ethyl to pentyl. The melting points showed no significant difference as the length of the side chain was increased from pentyl to heptyl. The aspirin analogues showed a similar trend, The relationship between solubility and carbon chain length agreed closely with that for the melting points with carbon chain length. In vitro non-enzymatic hydrolysis studies concluded that: (1) hydrolysis rate constants generally decreased with carbon chain length; (2) the diflunisal esters have shorter half lives compared with their salicylate counterparts; and (3) the in vitro hydrolysis of these compounds was retarded by the presence of bovine serum albumin. Protein binding experiments showed that the strength of binding of the aspirin and diflunisal analogues to bovine serum albumin increased with carbon chain length. (C) 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Drug delivery through the skin has been used to target the epidermis, dermis and deeper tissues and for systemic delivery, The major barrier for the transport of drugs through the skin is the stratum corneum, with most transport occurring through the intercellular region, The polarity of the intercellular region appears to be similar to butanol, with the diffusion of solutes being hindered by saturable hydrogen bonding to the polar head groups of the ceramides, fatty acids and other intercellular lipids, Accordingly, the permeability of the more lipophilic solutes is greatest from aqueous solutions, whereas polar solute permeability is favoured by hydrocarbon-based vehicles. 2. The skin is capable of metabolizing many substances and, through its microvasculature, limits the transport of most substances into regions below the dermis. 3. Although the flux of solutes through the skin should be identical for different vehicles when the solute exists as a saturated solution, the fluxes vary in accordance with the skin penetration enhancement properties of the vehicle. It is therefore desirable that the regulatory standards required for the bioequivalence of topical products include skin studies. 4. Deep tissue penetration can be related to solute protein binding, solute molecular size and dermal blood flow. 5. Iontophoresis is a promising area of skin drug delivery, especially for ionized solutes and when a rapid effect is required. 6. In general, psoriasis and other skin diseases facilitate drug delivery through the skin. 7. It is concluded that the variability in skin permeability remains an obstacle in optimizing drug delivery by this route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The outflow-concentration-time profiles for lignocaine (lidocaine) and its metabolites have been measured after bolus impulse administration of [C-14]lignocaine into the perfused rat liver. Livers from female Sprague-Dawley rats were perfused in a once-through fashion with red-blood-cell-free Krebs-Henseleit buffer containing 0 or 2% bovine serum albumin. Perfusate flow rates of 20 and 30 mL min(-1) were used and both normal and retrograde flow directions were employed. Significant amounts of metabolite were detected in the effluent perfusate soon after lignocaine injection. The early appearance of metabolite contributed to bimodal outflow profiles observed for total C-14 radioactivity. The lignocaine outflow profiles were well characterized by the two-compartment dispersion model, with efflux rate << influx rate. The profiles for lignocaine metabolites were also characterized in terms of a simplified two-compartment dispersion model. Lignocaine was found to be extensively metabolized under the experimental conditions with the hepatic availability ranging between 0.09 and 0.18. Generally lignocaine and metabolite availability showed no significant change with alterations in perfusate flow rate from 20 to 30 mt min(-1) or protein content from 0 to 2%. A significant increase in lignocaine availability occurred when 1200 mu M unlabelled lignocaine was added to the perfusate. Solute mean transit times generally decreased with increasing flow rate and with increasing perfusate protein content. The results confirm that lignocaine pharmacokinetics in the liver closely follow the predictions of the well-stirred model. The increase in lignocaine availability when 1200 mu M unlabelled lignocaine was added to the perfusate is consistent with saturation of the hydroxylation metabolic pathways of lignocaine metabolism.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overproduction or underregulation of the proinflammatory complement component C5a has been implicated in numerous immune and inflammatory conditions. Therefore, targeting the C5a receptor (C5aR) has become an innovative strategy for antiinflammatory drug development. The novel cyclic peptide C5aR antagonist, AcF-[OP(D-Cha)WR] (PMX53), attenuates injury in numerous animal models of inflammation following intravenous, subcutaneous, intraperitoneal, and oral administration. In the present study the transdermal pharmacology of PMX53 and three analogs designed with increased lipophilicity, hydrocinnamate-[OP(D-Cha)WCit] (PMX200), AcF-[OP(D-Cha)WCit] (PMX201) and hydrocinnamate-[OP(D-Cha)WR] (PMX205), have been examined in order to assess their transdermal permeability and inhibitory effect on C5a-mediated lipopolysaccharide (LPS)-induced systemic responses. In the rat, PMX53, PMX201, and PMX205, were bioavailable following topical dermal administration (10 mg/50 cm(2) site/rat). All analogs functionally antagonized neutropenia and hypotension induced by systemic challenge with LPS (I mg/kg i.v.). Interestingly, PMX200 attenuated LPS-induced neutropenia more effectively than other analogs, despite undetectable (< 5 ng/ml) circulating levels following topical administration. In conclusion, we have demonstrated that cyclic peptide C5aR antagonists can penetrate transdermally sufficiently to have systemic effects. However, increasing lipophilicity in these compounds did not result in increased blood levels. Nonetheless, topical application of C5aR antagonists produced circulating levels of the drugs that antagonized the LPS-induced systemic responses of neutropenia and hypotension. This suggests that these small-molecule C5aR antagonists may be developed for topical administration for the treatment of local and systemic inflammatory conditions in the human and veterinary pharmaceutical markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studied the structure-hepatic disposition relationships for cationic drugs of varying lipophilicity using a single-pass, in situ rat liver preparation. The lipophilicity among the cationic drugs studied in this work is in the following order: diltiazem. propranolol. labetalol. prazosin. antipyrine. atenolol. Parameters characterizing the hepatic distribution and elimination kinetics of the drugs were estimated using the multiple indicator dilution method. The kinetic model used to describe drug transport (the two-phase stochastic model) integrated cytoplasmic binding kinetics and belongs to the class of barrier-limited and space-distributed liver models. Hepatic extraction ratio (E) (0.30-0.92) increased with lipophilicity. The intracellular binding rate constant (k(on)) and the equilibrium amount ratios characterizing the slowly and rapidly equilibrating binding sites (K-S and K-R) increase with the lipophilicity of drug (k(on) : 0.05-0.35 s(-1); K-S : 0.61-16.67; K-R : 0.36-0.95), whereas the intracellular unbinding rate constant (k(off)) decreases with the lipophilicity of drug (0.081-0.021 s(-1)). The partition ratio of influx (k(in)) and efflux rate constant (k(out)), k(in)/k(out), increases with increasing pK(a) value of the drug [from 1.72 for antipyrine (pK(a) = 1.45) to 9.76 for propranolol (pK(a) = 9.45)], the differences in k(in/kout) for the different drugs mainly arising from ion trapping in the mitochondria and lysosomes. The value of intrinsic elimination clearance (CLint), permeation clearance (CLpT), and permeability-surface area product (PS) all increase with the lipophilicity of drug [CLint (ml . min(-1) . g(-1) of liver): 10.08-67.41; CLpT (ml . min(-1) . g(-1) of liver): 10.80-5.35; PS (ml . min(-1) . g(-1) of liver): 14.59-90.54]. It is concluded that cationic drug kinetics in the liver can be modeled using models that integrate the presence of cytoplasmic binding, a hepatocyte barrier, and a vascular transit density function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim was to examine the functional importance in the norepinephrine transporter (NET) of (i) the phenylalanine residue at position 531 in transmembrane domain (TMD) 11 by mutating it to tyrosine in the rat (rF531Y) and human (hF531Y) NETs and (ii) the highly conserved tyrosine residues at positions 249 in TMD 4 of human NET (hNET) (mutated to alanine: hY249A) and 271 in TMD 5, by mutating to alanine (hY271A), phenylalanine (hY271F) and histidine (hY271H). The effects of the mutations on NET function were for uptake of the substrates, examined by expressing the mutant and wildtype NETs in COS-7 cells and measuring the K-m and V-max for uptake of the substrates, [H-3]norepinephrine, [H-3]MPP+ and [H-3]dopamine, the K-D and B-max for [H-3]nisoxetine binding and the K-i of the inhibitors, nisoxetine, desipramine and cocaine, for inhibition of [H-3]norepinephrine uptake. The K-m values of the substrates were lower for the mutants at amino acid 271 than hNET and unaffected for the other mutants, and each mutant had a significantly lower than NET for substrate uptake. The mutations at position 271 caused an increase in the K-i or K-D values of nisoxetine, desipramine and cocaine, but there were no effects for the other mutations. Hence, the 271 tyrosine residue in TMD 5 is an important determinant of NET function, with the mutants showing an increase in the apparent affinities of substrates and a decrease in the apparent affinities of inhibitors, but the 249 tyrosine and 531 phenylalanine residues do not have a major role in determining NET function. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using NONMEM, the population pharmacokinetics of perhexiline were studied in 88 patients (34 F, 54 M) who were being treated for refractory angina. Their mean +/- SD (range) age was 75 +/- 9.9 years (46-92), and the length of perhexiline treatment was 56 +/- 77 weeks (0.3-416). The sampling time after a dose was 14.1 +/- 21.4 hours (0.5-200), and the perhexiline plasma concentrations were 0.39 +/- 0.32 mg/L (0.03-1.56). A one-compartment model with first-order absorption was fitted to the data using the first-order (FO) approximation. The best model contained 2 subpopulations (obtained via the $MIXTURE subroutine) of 77 subjects (subgroup A) and 11 subjects (subgroup B) that had typical values for clearance (CL/F) of 21.8 L/h and 2.06 L/h, respectively. The volumes of distribution (V/F) were 1470 L and 260 L, respectively, which suggested a reduction in presystemic metabolism in subgroup B. The interindividual variability (CV%) was modeled logarithmically and for CL/F ranged from 69.1% (subgroup A) to 86.3% (subgroup B). The interindividual variability in V/F was 111%. The residual variability unexplained by the population model was 28.2%. These results confirm and extend the existing pharmacokinetic data on perhexiline, especially the bimodal distribution of CL/F manifested via an inherited deficiency in hepatic and extrahepatic CYP2D6 activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To support student learning in a large Metabolism and Nutrition class, we have introduced a web-based package, using a commercially available program, WebCT. The package was developed at a minimal cost and with limited resources. In addition to downloadable (PDF) versions of lecture Powerpoint presentations, tutorial outlines and a practical class exercise, web-based self-directed learning exercises were included to reinforce and extend lecture material in an active learning environment. The web-site also contained a variety of formative and summative assessment tasks that examined both factual recall and higher order thinking Detailed course information, timetables and a bulletin board were also readily accessible. Student usage of the site was generally high, but varied widely between individual students. Students who achieved a high overall score for the course completed on average three times as many formative assessment items and achieved a higher score for all tests than students who did poorly. Student feedback about the site was very positive with the majority of students reporting that the course material and assessment items that were available were useful to their learning. Administration of the course was also facilitated. (C) 2001 IUBMB. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drugs which provide specific relief from migraine attacks, the ergopeptides (ergotamine and dihydroergotamine) and the various 'triptans' (notably sumatriptan), are often prescribed for persons already taking various migraine preventative agents, and sometimes drugs for other indications. As a result, migraine-specific drugs may become involved in drug-drug interactions. The migraine-specific drugs all act as agonists at certain subclasses of serotonin (5-hydroxytryptamine; 5-MT) receptor, particularly those of the 5-HT1D subtype, and produce vasoconstriction through these receptor-mediated mechanisms. The oral bioavailabilities of these drugs, particularly those of the ergopeptides, are often incomplete, due to extensive presystemic metabolism. As a result, if migraine-specific agents are coadministered with drugs with vasoconstrictive properties, or with drugs which inhibit the metabolism of the migraine-specific agents, there is a risk of interactions occurring which produce manifestations of excessive vasoconstriction. This can also occur through pharmacodynamic mechanisms, as when ergopeptides or triptans are coadministered with methysergide or propranolol (although a pharmacokinetic element may apply in relation to the latter interaction), or if one migraine-specific agent is used shortly after another. When egopeptide metabolism is inhibited by the presence of macrolide antibacterials, particularly troleandomycin and erythromycin, the resultant interaction can produce ergotism, sometimes leading to gangrene. Similar pharmacokinetic mechanisms, with their vasoconstrictive consequences, probably apply to combination of the ergopeptides with HIV protease inhibitors (indinavir and ritonavir), heparin, cyclosporin or tacrolimus. Inhibition of triptan metabolism by monoamine oxidase A inhibitors, e.g. moclobemide, may raise circulating triptan concentrations, although this does not yet seem to have led to reported clinical problems. Caffeine may cause increased plasma ergotamine concentrations through an as yet inadequately defined pharmacokinetic interaction. However, a direct antimigraine effect of caffeine may contribute to the claimed increased efficacy of ergotamine-caffeine combinations in relieving migraine attacks. Serotonin syndromes have been reported as probable pharmacodynamic consequences of the use of ergots or triptans in persons taking serotonin reuptake inhibitors. There have been two reports of involuntary movement disorders when sumatriptan has been used by patients already taking loxapine. Nearly all the clinically important interactions between the ergopeptide antimigraine agents and currently marketed drugs are likely to have already come to notice. In contrast, new interactions involving the triptans are likely to be recognised as additional members of this family of drugs, with their different patterns of metabolism and pharmacokinetics, are marketed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reasons for the intra- and interindividual variability in the clearance of valproic acid (VPA) have not been completely characterized. The aim of this study was to examine day-night changes in the clearance of 3-oxo-valproate (3-oxo-VPA), 4-hydroxy-valproate (4-OH-VPA), and valproic acid glucuronides under steady state. Six diurnally active healthy male volunteers ingested 200 mg sodium valproate 12 hourly, at 0800 and 2000, for 28 days. On the last study day, two sequential 12-h urine samples were collected commencing at 2000 the evening before. Plasma samples were obtained at the end of each collection. Following alkaline hydrolysis, urine was analyzed for concentrations of VPA, 3-oxo-VPA, and 4-OH-VPA. A separate aliquot was assayed for creatinine (CR). The plasma concentrations of VPA, 3-oxo-VPA, 2-en-VPA, and CR were determined. The analysis of VPA and its metabolites was performed by CC-MS. There was an increase in plasma 3-oxo-VPA concentration at 0800, sampling as compared to 2000 sampling (p < .05). The urinary excretion of 3-oxo-VPA and VPA glucuronides were decreased between 2000 and 0800, compared to between 0800, and 2000, by 30% and 50% respectively (p < .05). These results indicate a nocturnal decrease in renal clearance of 3-oxo-VPA rather than a decrease in the beta -oxidation of VPA at night. These differences were not explained by differences between the sampling periods in CR excretion. These results indicate the importance of collecting samples of 24-h duration when studying metabolic profiles of VPA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. An isolated perfused rat liver (IPRL) preparation was used to investigate separately the disposition of the non-steroidal anti-inflammatory drug (NSAID) naproxen (NAP), its reactive acyl glucuronide metabolite (NAG) and a mixture of NAG rearrangement isomers (isoNAG), each at 30 mug NAP equivalents ml(-1) perfusate (n = 4 each group). 2. Following administration to the IPRL, NAP was eliminated slowly in a log-linear manner with an apparent elimination half-life (t(1/2)) of 13.4 +/-4.4 h. No metabolites were detected in perfusate, while NAG was the only metabolite present in bile in measurable amounts (3.9 +/-0.8%, of the dose). Following their administration to the IPRL, both NAG and isoNAG were rapidly hydrolysed (t(1/2) in perfusate=57 +/-3 and 75 +/- 14min respectively). NAG also rearranged to isoNAG in the perfusate. Both NAG and isoNAG were excreted intact in bile (24.6 and 14.8% of the NAG and isoNAG doses, respectively). 3. Covalent NAP-protein adducts in the liver increased as the dose changed from NAP to NAG to isoNAG (0.20 to 0.34 to 0.48% of the doses, respectively). Similarly, formation of covalent NAP-protein adducts in perfusate were greater in isoNAG-dosed perfusions. The comparative results Suggest that isoNAG is a better substrate for adduct formation with liver proteins than NAG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibition of recombinant CYP1A1 and CYP1A2 activity by quinidine and quinine was evluated using ethoxyresorufin O -deethylation, phenacetin O -deethylation and propranolol desisopropylation as probe catalytic pathways. 2. With substrate concentrations near the K m of catalysis, both quinidine and quinine potently inhibited CYP1A1 activity with [ I ] 0.5 ~ 1-3 μM, whereas in contrast, there was little inhibition of CYP1A2 activity. The Lineweaver-Burk plots with varying inhibitor concentrations suggested that inhibition by quinidine and quinine was competitive. 3. There was only trace metabolism of quinidine by recombinant CYP1A1, whereas rat liver microsomes as a control showed extensive consumption of quinidine and metabolite production. 4. This work suggests that quinidine is a non-classical inhibitor of CYP1A1 and that it is not as highly specific at inhibiting CYP2D6 as previously thought.