78 resultados para Spherical aggregates
Resumo:
Comparison of the 16S rRNA gene sequence determined for Chitinophaga pinensis showed that this species is most closely related to Flexibacter filiformis in the Flexibacter-Bacteroides-Cytophaga phylum, These two chitinolytic bacteria, which are characterized by transformation into spherical bodies on ageing, belong to a strongly supported lineage that also includes Cytophaga arvensicola, Flavobacterium ferrugineum and Flexibacter sancti, The lineage is distinct from the microcyst-forming species Sporocytophaga myxococcoides.
Resumo:
A novel three-axis gradient set and RF resonator for orthopedic MRT has been designed and constructed. The set is openable and may be wrapped around injured joints. The design methodology used was the minimization of magnetic field spherical harmonics by simulated annealing. Splitting of the longitudinal coil presents the major design challenge to a fully openable gradient set and in order to efficiently design such coils, we have developed a new fast algorithm for determining the magnetic field spherical harmonics generated by an are of multiturn wire. The algorithm allows a realistic impression of the effect of split longitudinal designs. A prototype set was constructed based on the new designs and tested in a 2-T clinical research system. The set generated 12 mT/m/A with a linear region of 12 cm and a switching time of 100 mu s, conforming closely with theoretical predictions. Preliminary images from the set are presented. (C) 1999 Academic Press.
Resumo:
The physical nonequilibrium of solute concentration resulting from preferential now of soil water has often led to models where the soil is partitioned into two regions: preferential flow paths, where solute transport occurs mainly by advection, and the remaining region, where significant solute transport occurs through diffusive exchange with the flow paths. These two-region models commonly ignore concentration gradients within the regions. Our objective was to develop a simple model to assess the influence of concentration gradients on solute transport and to compare model results with experiments conducted on structured materials. The model calculates the distribution of solutes in a single spherical aggregate surrounded by preferential now paths and subjected to alternating boundary conditions representing either an exchange of solutes between the two regions (a wet period) or no exchange but redistribution of solutes within the aggregate (a dry period). The key parameter in the model is the aggregate radius, which defines the diffusive time scales. We conducted intermittent leaching experiments on a column of packed porous spheres and on a large (300 mm long by 216 mm diameter) undisturbed field soil core to test the validity of the model and its application to field soils. Alternating wet and dry periods enhanced leaching by up to 20% for this soil, which was consistent with the model's prediction, given a fitted equivalent aggregate radius of 1.8 cm, If similar results are obtained for other soils, use of alternating wet and dry periods could improve management of solutes, for example in salinity control and in soil remediation.
Resumo:
This paper describes the ocular morphology of young adults of the southern hemisphere lamprey Geotria australis, the sole representative of the Geotriidae, and makes comparisons with those of holarctic lampreys (Petromyzontidae). As previously reported for the holarctic lamprey Ichthyomyzon unicuspis [Collin and Fritzsch, 1993], the lens of G. australis is non-spherical and possesses a cone-shaped posterior that may be capable of mediating variable focus. The avascular retina of G. australis is well differentiated, containing three retinal ganglion cell populations, three layers of horizontal cells and three photoreceptor types, in contrast to petromyzontids that contain only two photoreceptor types (short and long), G. australis possesses one rod-like (R1) and two cone-like (C1 and C2) photoreceptors. Although the rodlike receptor in G. australis may be homologous with the short receptors of holarctic lampreys, the two cone-like receptors have morphological characteristics that differ markedly from those of the long receptors of their holarctic counterparts. The features which distinguish the two cone-like receptors from those of the long receptor type in holarctic lampreys are the characteristics of the mitochondria and the presence of large amounts of two different types of stored secretory material in the endoplasmic reticulum of the myoid (refractile bodies). The endoplasmic reticulum of each receptor type has a different shape and staining profile and is polymorphic, each showing a continuum of distension. It is proposed that the presence of two cone-like photoreceptors with different characteristics would increase the spectral range of G. australis and thus be of value during the parasitic phase, when this lamprey lives in the surface marine waters. The irideal flap, present in G. australis but not petromyzontids, would assist in reducing intraocular flare during life in surface waters. The results of this study, which are discussed in the context of the proposed evolution of lampreys, emphasise that it is important to take into account the characteristics of the eyes of southern hemisphere lampreys when making generalizations about the eyes of lampreys as a whole.
Resumo:
We demonstrate a three-dimensional scanning probe microscope in which the extremely soft spring of an optical tweezers trap is used. Feedback control of the instrument based on backscattered light levels allows three-dimensional imaging of microscopic samples in an aqueous environment. Preliminary results with a 2-mu m-diameter spherical probe indicate that features of approximately 200 nm can be resolved, with a sensitivity of 5 nm in the height measurement. The theoretical resolution is limited by the probe dimensions. (C) 1999 Optical Society of America.
Resumo:
The effect of aging on host resistance to systemic candidosis was assessed by monitoring the course of infection in 16-month-old CBA/CaH mice (aged non-immune) and in a comparable group that had been infected with a sublethal dose of Candida albicans at 6 weeks of age (aged immune). Aged non-immune mice showed rapid progression of the disease, with a marked increase in the number of mycelia in the brain and kidney, and early morbidity, Foci of myocardial necrosis were evident, but inflammatory cells were sparse. The histological picture in the aged immune mice was similar to that in the aged non-immune group, although fewer mycelial aggregates were seen. Both groups of aged mice showed a significantly lower fungal burden in the brain on day 1 of infection, but on day 4, colony counts increased significantly in the aged non-immune mice, Comparison of cytokine gene expression in the infected brains showed that the relative amount of interferon-gamma and tumour necrosis factor-alpha cDNA were similar in all three groups. Interleukin-6 was elevated in both infected non-immune and uninfected aged mice. Aged immune mice showed no morbidity after challenge, and both colonisation and tissue damage were reduced in comparison with the aged non-immune animals.
Resumo:
This paper describes a hybrid numerical method for the design of asymmetric magnetic resonance imaging magnet systems. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. A new type of asymmetric magnet is proposed in this work. The asymmetric MRI magnet allows the diameter spherical imaging volume to be positioned close to one end of the magnet. The main advantages of making the magnet asymmetric include the potential to reduce the perception of claustrophobia for the patient, better access to the patient by attending physicians, and the potential for reduced peripheral nerve stimulation due to the gradient coil configuration. The results highlight that the method can be used to obtain an asymmetric MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1.2 m in length. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 1999 Academic Press.
Resumo:
Hypoechinorhynchus robustus sp. n. is described from Notolabrus parilus (Richardson) (Labridae) from Pt Peron, Western Australia. It has a proboscis with 30 hooks arranged in ten longitudinal rows: 5 rows of a small apical spine, a large anterior hook and a small posterior spine, 5 rows of a large anterior hook, a middle spine and a posterior spine. The new species is distinguished from other species of the genus by having a set of 5 small apical spines anterior to the large hooks on the proboscis, by having lemnisci that barely extend beyond the proboscis receptacle and testes which are more adjacent than tandem. H. robustus also has robust trunk spines anteriorly. Re-examination of Hypoechinorhynchus alaeopis Yamaguti, 1939 (type species) revealed trunk spines that had been overlooked previously. The Hypoechinorhynchidae is made a junior synonym of Arhythmacanthidae because there is considerable overlap between the two family diagnoses, particularly in that both families have a proboscis armature that changes abruptly from small basal spines to large apical (or subapical if present) hooks. The genus Hypoechinorhynchus is placed in the subfamily Arhythmacanthinae because it has trunk spines and a spherical proboscis with few hooks (relative to other arhythmacanthid genera). It is also proposed that Heterosentis magellanicus (Szidat, 1950) be returned to the genus Hypoechinorhynchus since it was transferred to Heterosentis primarily because it had trunk spines. The other hypoechinorhynchid genus contained only Bolborhynchoides exiguus (Achmerov et Dombrowskaja-Achmerova, 1941) Achmerov, 1959 and is relegated to incertae sedis.
Resumo:
Most soils contain preferential flow paths that can impact on solute mobility. Solutes can move rapidly down the preferential flow paths with high pore-water velocities, but can be held in the less permeable region of the soil matrix with low pore-water velocities, thereby reducing the efficiency of leaching. In this study, we conducted leaching experiments with interruption of the flow and drainage of the main flow paths to assess the efficiency of this type of leaching. We compared our experimental results to a simple analytical model, which predicts the influence of the variations in concentration gradients within a single spherical aggregate (SSA) surrounded by preferential flow paths on leaching. We used large (length: 300 mm, diameter: 216 mm) undisturbed field soil cores from two contrasting soil types. To carry out intermittent leaching experiments, the field soil cores were first saturated with tracer solution (CaBr2), and background solution (CaCl2) was applied to mimic a leaching event. The cores were then drained at 25- to 30-cm suction to empty the main flow paths to mimic a dry period during which solutes could redistribute within the undrained region. We also conducted continuous leaching experiments to assess the impact of the dry periods on the efficiency of leaching. The flow interruptions with drainage enhanced leaching by 10-20% for our soils, which was consistent with the model's prediction, given an optimised equivalent aggregate radius for each soil. This parameter quantifies the time scales that characterise diffusion within the undrained region of the soil, and allows us to calculate the duration of the leaching events and interruption periods that would lead to more efficient leaching. Application of these methodologies will aid development of strategies for improving management of chemicals in soils, needed in managing salts in soils, in improving fertiliser efficiency, and in reclaiming contaminated soils. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have grown surfactant-templated silicate films at the air-water interface using n-alkyltrimethylammonium bromide and chloride in an acid synthesis with tetraethyl orthosilicate as the silicate source. The films have been grown with and without added salt (sodium chloride, sodium bromide) and with n-alkyl chain lengths from 12 to 18, the growth process being monitored by X-ray reflectometry. Glassy, hexagonal, and lamellar structures have been produced in ways that are predictable from the pure surfactant-water phase diagrams. The synthesis appears to proceed initially through an induction period characterized by the accumulation of silica-coated spherical micelles near the surface. All syntheses, except those involving C(12)TACl, show a sudden transformation of the spherical micellar phase to a hexagonal phase. This occurs when the gradually increasing ionic strength and/or changing ethanol concentration is sufficient to change the position of boundaries within the phase diagram. A possible mechanism for this to occur may be to induce a sphere to rod transition in the micellar structure. This transformation, as predicted from the surfactant-water phase diagram, can be induced by addition of salts and is slower for chloride than bromide counteranions. The hexagonal materials change in cell dimension as the chain length is changed in a way consistent with theoretical model predictions. All the materials have sufficiently flexible silica frameworks that phase interconversion is observed both from glassy to hexagonal and from hexagonal, to lamellar and vice versa in those surfactant systems where multiple phases are found to exist.
Resumo:
The eyes of the sandlance, Limnichthyes fasciatus (Creediidae. Teleostei) move independently and possess a refractive cornea, a convexiclivate fovea and a non-spherical lens giving rise to a wide separation of the nodal point from the axis of rotation of the eye much like that of a chameleon. To investigate this apparent convergence of the visual optics in these phylogenetically disparate species, we examine feeding behaviour and accommodation in the sandlance with special reference to the possibility that sandlances use accommodation as a depth cue to judge strike length. Frame-by-frame analysis of over 2000 strikes show a 100% success rate. Explosive strikes are completed in 50 ms over prey distances of four body lengths. Close-up video confirms that successful strikes can be initiated monocularly (both normally and after monocular occlusion) showing that binocular cues are not necessary to judge the length of a strike. Additional means of judging prey distance may also be derived from parallax information generated by rotation of the eye as suggested for chameleons. Using photorefraction on anaesthetised sandlances, accommodative changes were induced with acetylcholine and found to range between 120 D and 180 D at a speed of 600-720 D s(-1). The large range of accommodation (25% of the total power) is also thought to be mediated by corneal accommodation where the contraction of a unique cornealis muscle acts to change the corneal curvatures.
Resumo:
We have previously demonstrated that or-smooth muscle (alpha -SM) actin is predominantly distributed in the central region and beta -non-muscle (beta -NM) actin in the periphery of cultured rabbit aortic smooth muscle cells (SMCs). To determine whether this reflects a special form of segregation of contractile and cytoskeletal components in SMCs, this study systematically investigated the distribution relationship of structural proteins using high-resolution confocal laser scanning fluorescent microscopy. Not only isoactins but also smooth muscle myosin heavy chain, alpha -actinin, vinculin, and vimentin were heterogeneously distributed in the cultured SMCs. The predominant distribution of beta -NM actin in the cell periphery was associated with densely distributed vinculin plaques and disrupted or striated myosin and ol-actinin aggregates, which may reflect a process of stress fiber assembly during cell spreading and focal adhesion formation. The high-level labeling of alpha -SM actin in the central portion of stress fibers was related to continuous myosin and punctate alpha -actinin distribution, which may represent the maturation of the fibrillar structures. The findings also suggest that the stress fibers, in which actin and myosin filaments organize into sar-comere-like units with alpha -actinin-rich dense bodies analogous to Z-lines, are the contractile vimentin structures of cultured SMCs that link to the network of vimentin-containing intermediate alpha -actinin filaments through the dense bodies and dense plaques.
Resumo:
This paper presents a numerical technique for the design of an RF coil for asymmetric magnetic resonance imaging (MRI) systems. The formulation is based on an inverse approach where the cylindrical surface currents are expressed in terms of a combination of sub-domain basis functions: triangular and pulse functions. With the homogeneous transverse magnetic field specified in a spherical region, a functional method is applied to obtain the unknown current coefficients. The current distribution is then transformed to a conductor pattern by use of a stream function technique. Preliminary MR images acquired using a prototype RF coil are presented and validate the design method. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Electron spin transient nutation (ESTN) experiments show that the spin multiplicity of the ground state of C-60(3-) in frozen solution is a doublet with S = 1/2. In purified samples, there is no evidence for excited states or other species with higher multiplicity. In the anions Of C120On- (n = 2, 3, 4), where the CW EPR experiments have shown that a mixture of species is present, ESTN experiments confirm that a doublet with S = 1/2 is associated with the 3- anion and triplets with S = 1 are associated with the 2- and 4- anions. A weak nutation peak attributable to m(s) = -1/2 1/2 transitions within a quartet state may arise from association of anions with spins of 1/2 and 1 in solute aggregates.
Resumo:
The recently discovered cyclotides kalata B1 and kalata B2 are miniproteins containing a head-to-tail cyclized backbone and a cystine knot motif, in which disulfide bonds and the connecting backbone segments form a ring that is penetrated by the third disulfide bond. This arrangement renders the cyclotides extremely stable against thermal and enzymatic decay, making them a possible template onto which functionalities can be grafted.We have compared the hydrodynamic properties of two prototypic cyclotides, kalata B1 and kalata B2, using analytical ultracentrifugation techniques. Direct evidence for oligomerization of kalata B2 was shown by sedimentation velocity experiments in which a method for determining size distribution of polydisperse molecules in solution was employed. The shape of the oligomers appears to be spherical. Both sedimentation velocity and equilibrium experiments indicate that in phosphate buffer kalata B1 exists mainly as a monomer, even at millimolar concentrations. In contrast, at 1.6 mM, kalata B2 exists as an equilibrium mixture of monomer (30%), tetramer (42%), octamer (25%), and possibly a small proportion of higher oligomers. The results from the sedimentation equilibrium experiments show that this self-association is concentration dependent and reversible. We link our findings to the three-dimensional structures of both cyclotides, and propose two putative interaction interfaces on opposite sides of the kalata B2 molecule, one involving a hydrophobic interaction with the Phe(6), and the second involving a charge-charge interaction with the Asp(25) residue. An understanding of the factors affecting solution aggregation is of vital importance for future pharmaceutical application of these molecules.