35 resultados para Spearman Rank correlation
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
B-type natriuretic peptide (BNP) levels increase in systolic heart failure (HF). However, the value of BNP in hypertensive patients with suspected diastolic HF (symptoms suggestive of HF but normal ejection fraction) and its relation to myocardial function in these patients is unclear. We prospectively studied 72 ambulatory hypertensive subjects (40 women, mean age 58 +/- 8 years) with exertional dyspnea and ejection fraction greater than or equal to50%. Diastolic function was evaluated with transmitral and pulmonary venous Doppler, mitral annular velocities (pulsed-wave tissue Doppler), and flow propagation velocity (color M-mode). Systolic function was assessed with strain and strain rate derived from color tissue Doppler imaging. BNP was related to myocardial function and the presence or absence of global diastolic dysfunction. By conventional Doppler criteria, 34 patients had normal left ventricular diastolic function and 38 had isolated diastolic dysfunction. BNP values were higher in patients with diastolic dysfunction (46 +/- 48 vs 20 +/- 20 pg/ml, p = 0.004) and were related independently to blood pressure, systolic strain rate, left atrial function (p < 0.01 for all), and age (p = 0.015). Patients with diastolic dysfunction and pseudonormal filling had higher BNP levels compared with impaired relaxation (89 +/- 47 vs 35 +/- 42 pg/ml, p = 0.001). However, 79% of patients with diastolic dysfunction had BNP levels within the normal range. We conclude that in ambulatory hypertensive patients with symptoms suggestive of mild HF and normal ejection fraction, BNP is related to atrial and ventricular systolic parameters, blood pressure, and age. Although elevated in the presence of diastolic dysfunction, the BNP level mostly is in the normal range and, therefore, has limited diagnostic value in stable patients with suspected diastolic HF. (C) 2003 by Excerpta Medica, Inc.
Resumo:
Background and aims: Hip fracture is a devastating event in terms of outcome in the elderly, and the best predictor of hip fracture risk is hip bone density, usually measured by dual X-ray absorptiometry (DXA). However, bone density can also be ascertained from computerized tomography (CT) scans, and mid-thigh scans are frequently employed to assess the muscle and fat composition of the lower limb. Therefore, we examined if it was possible to predict hip bone density using mid-femoral bone density. Methods: Subjects were 803 ambulatory white and black women and men, aged 70-79 years, participating in the Health, Aging and Body Composition (Health ABC) Study. Bone mineral content (BMC, g) and volumetric bone mineral density (vBMD, mg/cm(3)) of the mid-femur were obtained by CT, whereas BMC and areal bone mineral density (aBMD, g/cm(2)) of the hip (femoral neck and trochanter) were derived from DXA. Results: In regression analyses stratified by race and sex, the coefficient of determination was low with mid-femoral BMC, explaining 6-27% of the variance in hip BMC, with a standard error of estimate (SEE) ranging from 16 to 22% of the mean. For mid-femur vBMD, the variance explained in hip aBMD was 2-17% with a SEE ranging from 15 to 18%. Adjusting aBMD to approximate volumetric density did not improve the relationships. In addition, the utility of fracture prediction was examined. Forty-eight subjects had one or more fractures (various sites) during a mean follow-up of 4.07 years. In logistic regression analysis, there was no association between mid-femoral vBMD and fracture (all fractures), whereas a 1 SD increase in hip BMD was associated with reduced odds for fracture of similar to60%. Conclusions: These results do not support the use of CT-derived mid-femoral vBMD or BMC to predict DXA-measured hip bone mineral status, irrespective of race or sex in older adults. Further, in contrast to femoral neck and trochanter BMD, mid-femur vBMD was not able to predict fracture (all fractures). (C) 2003, Editrice Kurtis.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.