39 resultados para Social Information Processing Theory
Resumo:
A k-NN query finds the k nearest-neighbors of a given point from a point database. When it is sufficient to measure object distance using the Euclidian distance, the key to efficient k-NN query processing is to fetch and check the distances of a minimum number of points from the database. For many applications, such as vehicle movement along road networks or rover and animal movement along terrain surfaces, the distance is only meaningful when it is along a valid movement path. For this type of k-NN queries, the focus of efficient query processing is to minimize the cost of computing distances using the environment data (such as the road network data and the terrain data), which can be several orders of magnitude larger than that of the point data. Efficient processing of k-NN queries based on the Euclidian distance or the road network distance has been investigated extensively in the past. In this paper, we investigate the problem of surface k-NN query processing, where the distance is calculated from the shortest path along a terrain surface. This problem is very challenging, as the terrain data can be very large and the computational cost of finding shortest paths is very high. We propose an efficient solution based on multiresolution terrain models. Our approach eliminates the need of costly process of finding shortest paths by ranking objects using estimated lower and upper bounds of distance on multiresolution terrain models.
Resumo:
Domain specific information retrieval has become in demand. Not only domain experts, but also average non-expert users are interested in searching domain specific (e.g., medical and health) information from online resources. However, a typical problem to average users is that the search results are always a mixture of documents with different levels of readability. Non-expert users may want to see documents with higher readability on the top of the list. Consequently the search results need to be re-ranked in a descending order of readability. It is often not practical for domain experts to manually label the readability of documents for large databases. Computational models of readability needs to be investigated. However, traditional readability formulas are designed for general purpose text and insufficient to deal with technical materials for domain specific information retrieval. More advanced algorithms such as textual coherence model are computationally expensive for re-ranking a large number of retrieved documents. In this paper, we propose an effective and computationally tractable concept-based model of text readability. In addition to textual genres of a document, our model also takes into account domain specific knowledge, i.e., how the domain-specific concepts contained in the document affect the document’s readability. Three major readability formulas are proposed and applied to health and medical information retrieval. Experimental results show that our proposed readability formulas lead to remarkable improvements in terms of correlation with users’ readability ratings over four traditional readability measures.