58 resultados para Single walled carbon nanotubes
Resumo:
We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.
Resumo:
We report kinetic molecular sieving of hydrogen and deuterium in zeolite rho at low temperatures, using atomistic molecular dynamics simulations incorporating quantum effects via the Feynman-Hibbs approach. We find that diffusivities of confined molecules decrease when quantum effects are considered, in contrast with bulk fluids which show an increase. Indeed, at low temperatures, a reverse kinetic sieving effect is demonstrated in which the heavier isotope, deuterium, diffuses faster than hydrogen. At 65 K, the flux selectivity is as high as 46, indicating a good potential for isotope separation.
Resumo:
In this work, the different adsorption properties of H and alkali metal atoms on the basal plane of graphite are studied and compared using a density functional method on the same model chemistry level. The results show that H prefers the on-top site while alkali metals favor the middle hollow site of graphite basal plane due to the unique electronic structures of H, alkali metals, and graphite. H has a higher electronegativity than carbon, preferring to form a covalent bond with C atoms, whereas alkaline metals have lower electronegativity, tending to adsorb on the highest electrostatic potential sites. During adsorption, there are more charges transferred from alkali metal to graphite than from H to graphite.
Resumo:
Hydrogen storage in traditional metallic hydrides can deliver about 1.5 to 2.0 wt pct hydrogen but magnesium hydrides can achieve more than 7 wt pct. However, these systems suffer from high temperature release drawback and chemical instability problems. Recently, big improvements of reducing temperature and increasing kinetics of hydrogenation have been made in nanostructured Mg-based composites. This paper aims to provide an overview of the science and engineering of Mg materials and their nanosized composites with nanostructured carbon for hydrogen storage. The needs in research including preparation of the materials, processing and characterisation and basic mechanisms will be explored. The preliminary experimental results indicated a promising future for chemically stable hydrogen storage using carbon nanotubes modified metal hydrides under lower temperatures.
Resumo:
Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/ gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.
Resumo:
The storage of gases in porous adsorbents, such as activated carbon and carbon nanotubes, is examined here thermodynamically from a systems viewpoint, considering the entire adsorption-desorption cycle. The results provide concrete objective criteria to guide the search for the Holy Grail adsorbent, for which the adsorptive delivery is maximized. It is shown that, for ambient temperature storage of hydrogen and delivery between 30 and 1.5 bar pressure, for the optimum adsorbent the adsorption enthalpy change is 15.1 kJ/mol. For carbons, for which the average enthalpy change is typically 5.8 kJ/mol, an optimum operating temperature of about 115 K is predicted. For methane, an optimum enthalpy change of 18.8 kJ/mol is found, with the optimum temperature for carbons being 254 K. It is also demonstrated that for maximum delivery of the gas the optimum adsorbent must be homogeneous, and that introduction of heterogeneity, such as by ball milling, irradiation, and other means, can only provide small increases in physisorption-related delivery for hydrogen. For methane, heterogeneity is always detrimental, at any value of average adsorption enthalpy change. These results are confirmed with the help of experimental data from the literature, as well as extensive Monte Carlo simulations conducted here using slit pore models of activated carbons as well as atomistic models of carbon nanotubes. The simulations also demonstrate that carbon nanotubes offer little or no advantage over activated carbons in terms of enhanced delivery, when used as storage media for either hydrogen or methane.
Resumo:
Cellular delivery involving the transfer of various drugs and bio-active molecules (peptides, proteins and DNAs, etc.) through the cell membrane into cells has attracted increasing attention because of its importance in medicine and drug delivery. This topic has been extensively reviewed. The direct delivery of drugs and biomolecules, however, is generally inefficient and suffering from problems such as enzymic degradation of DNAs. Therefore, searching for efficient and safe transport vehicles (carriers) to delivery genes or drugs into cells has been challenging yet exciting area of research. In past decades, many carriers have been developed and investigated extensively which can be generally classified into four major groups: viral carriers, organic cationic compounds, recombinant protiens and inorganic nanoparticles. Many inorganic materials, such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide and layered double hydroxide (LDH), have been studied. Inorganic nanoparticles show low toxicity and promise for controlled delivery properties, thus presenting a new alternative to viral carriers and cationic carriers. Inorganic nanoparticles generally possess versatile properties suitable for cellular delivery, including wide availability, rich functionality, good biocompatibility, potential capability of targeted delivery (e.g. selectively destroying cancer cells but sparing normal tissues) and controlled release of carried drugs. This paper reviews the latest advances in inorganic nanoparticle applications as cellular delivery carriers and highlights some key issues in efficient cellular delivery using inorganic nanoparticles. Critical proper-ties of inorganic nanoparticles, surface functionalisation (modification), uptake of biomolecules, the driving forces for delivery, and release of biomolecules will be reviewed systematically. Selected examples of promising inorganic nanoparticle delivery systems, including gold, fullerences and carbon nanotubes, LDH and various oxide nanoparticles in particular their applications for gene delivery will be discussed. The fundamental understanding of properties of inorganic nanoparticles in relation to cellular delivery efficiency as the most paramount issue will be highlighted. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H-2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H-2 molecules, respectively). Additionally, a molecular adsorption state of H-2 above the Ti atom is observed for the first time and is attributed to the polarization of the H-2 molecule by the Ti cation. Our results parallel recent findings for H-2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.
Resumo:
Adsorption of p-Cresol and p-Nitrophenol by untreated activated carbon in single and multisolute solutions was carried out at 301 K and at controlled pH conditions. In acidic conditions, well below the pK(a) of both solutes, it was observed that the adsorbate solubility and the electron density of aromatic rings influenced the extent of adsorption by affecting the extent of London dispersion forces. The fitted parameters obtained from single-solute Langmuir equation show that Q(max) and the adsorption affinity of carbon for the compound with low pK(a) decrease more significantly. In higher solution pH conditions, on the other hand, it was found that electrostatic forces played a significant role on the extent of adsorption. The presence of another compound decreases Q(max) and the adsorption affinity of carbon for the principal compound. The effect of pH, on the carbon surface and on the solute molecules, must be considered. Adsorption of the solute at higher pH values was found to be dependent on the concentration of anionic form of the solute. The isotherm data were fitted to the Langmuir isotherm equation for both single and double solute solutions.
Resumo:
Five kinetic models for adsorption of hydrocarbons on activated carbon are compared and investigated in this study. These models assume different mass transfer mechanisms within the porous carbon particle. They are: (a) dual pore and surface diffusion (MSD), (b) macropore, surface, and micropore diffusion (MSMD), (c) macropore, surface and finite mass exchange (FK), (d) finite mass exchange (LK), and (e) macropore, micropore diffusion (BM) models. These models are discriminated using the single component kinetic data of ethane and propane as well as the multicomponent kinetics data of their binary mixtures measured on two commercial activated carbon samples (Ajax and Norit) under various conditions. The adsorption energetic heterogeneity is considered for all models to account for the system. It is found that, in general, the models assuming diffusion flux of adsorbed phase along the particle scale give better description of the kinetic data.
Resumo:
Single-unit electrophysiology was used to record the nerve impulses from the carbon dioxide receptors of female Queensland fruit flies, Bactrocera tryoni. The receptors responded to stimulation in a phasic-tonic manner and also had a period of inhibition of the nerve impulses after the end of stimulation, at high stimulus intensities. The cell responding to carbon dioxide was presented with a range of environmental odorants and found to respond to methyl butyrate and 2-butanone. The coding characteristics of the carbon dioxide cell and the ability to detect other odorants are discussed, with particular reference to the known behavior of the fly.
Resumo:
An important feature of improving lattice gas models and classical isotherms is the incorporation of a pore size dependent capacity, which has hitherto been overlooked. In this paper, we develop a model for predicting the temperature dependent variation in capacity with pore size. The model is based on the analysis of a lattice gas model using a density functional theory approach at the close packed limit. Fluid-fluid and solid-fluid interactions are modeled by the Lennard-Jones 12-6 potential and Steele's 10-4-3, potential respectively. The capacity of methane in a slit-shaped carbon pore is calculated from the characteristic parameters of the unit cell, which are extracted by minimizing the grand potential of the unit cell. The capacities predicted by the proposed model are in good agreement with those obtained from grand canonical Monte Carlo simulation, for pores that can accommodate up to three adsorbed layers. Single particle and pair distributions exhibit characteristic features that correspond to the sequence of buckling and rhombic transitions that occur as the slit pore width is increased. The model provides a useful tool to model continuous variation in the microstructure of an adsorbed phase, namely buckling and rhombic transitions, with increasing pore width. (C) 2002 American Institute of Physics.
Resumo:
A novel and simple method for determination of micropore network connectivity of activated carbon using liquid phase adsorption is presented in this paper. The method is applied to three different commercial carbons with eight different liquid phase adsorptives as probes. The effect of the pore network connectivity on the prediction of multicomponent adsorption equilibria was also studied. For this purpose, the Ideal Adsorbed Solution Theory (IAST) was used in conjuction with the modified DR single component isotherm. The results of comparison with experimental data show that incorporation of the connectivity, and consideration of percolation processes associated with the different molecular sizes of the adsorptives in the mixture, can improve the performance of the IAST in predicting multicomponent adsorption equilibria.
Resumo:
The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A heterogeneous modified vacancy solution model of adsorption developed is evaluated. The new model considers the adsorption process through a mass-action law and is thermodynamically consistent, while maintaining the simplicity in calculation of multicomponent adsorption equilibria, as in the original vacancy solution theory. It incorporates the adsorbent heterogeneity through a pore-width-related potential energy, represented by Steele's 10-4-3 potential expression. The experimental data of various hydrocarbons, CO2 and SO2 on four different activated carbons - Ajax, Norit, Nuxit, and BPL - at multiple temperatures over a wide range of pressures were studied by the heterogeneous modified VST model to obtain the isotherm parameters and micropore-size distribution of carbons. The model successfully correlates the single-component adsorption equilibrium data for all compounds studied on various carbons. The fitting results for the vacancy occupancy parameter are consistent with the pressure change on different carbons, and the effect of pore heterogeneity is important in adsorption at elevated pressure. It predicts binary adsorption equilibria better than the IAST scheme, reflecting the significance of molecular size nonideality.