56 resultados para Shipping Fever
Resumo:
A 3-year-old girl is brought to your office by her mother because she has a fever and complains that her ear hurts. She has no significant medical history. The child is not pleased to be in the physician's office and has been crying. Her mother explains that she developed a cold about 3 days ago with sniffles. Her temperature is 37.8 degreesC (100 degreesF), and the rest of the physical examination is completed with some difficulty. The only abnormalities are slight redness of the throat. a nose full of thick green mucus, and injected tympanic membranes. You wonder what findings other than red tympanic membranes should lead you to diagnose otitis media and also consider the recent controversy about whether to treat acute otitis media (AOM) with antibiotics.
Resumo:
Monocyte macrophages (M phi) are thought to be the principal target cells for the dengue viruses (DV), the cause of dengue fever and hemorrhagic fever. Cell attachment is mediated by the virus envelope (E) protein, but the host-cell receptors remain elusive. Currently, candidate receptor molecules include proteins, Fc receptors, glycosaminoglycans (GAGs) and lipopolysaccharide binding CD14-associated molecules. Here, we show that in addition to M phi, cells of the T- and B-cell lineages, and including cells lacking GAGs, can bind and become infected with DV. The level of virus binding varied widely between cell lines and, notably, between virus strains within a DV serotype. The latter difference may be ascribable to one or more amino acid differences in domain II of the E protein. Heparin had no significant effect on DV binding, while heparinase treatment of cells in all cases increased DV binding, further supporting the contention that GAGs are not required for DV binding and infection of human cells. In contrast to a recent report, we found that lipopolysaccharide (LPS) had either no effect or enhanced DV binding to, and infection of various human leukocyte cell lines, while in all virus-cell combinations, depletion of Ca2+/Mg2+ enhanced DV binding. This argues against involvement of beta (2) integrins in virus-host cell interactions, a conclusion in accord with the demonstration of three virus binding membrane proteins of < 75 kDa. Collectively, the results of this study question the purported exclusive importance of the E protein domain III in DV binding to host cells and point to a far more complex interaction between various target cells and, notably, individual DV strains. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The 12 cysteine residues in the flavivirus NS1 protein are strictly conserved, suggesting that they form disulfide bonds that are critical for folding the protein into a functional structure. In this study, we examined the intramolecular disulfide bond arrangement of NS1 of Murray Valley encephalitis virus and elucidated three of the six cysteine-pairing arrangements. Disulfide linkages were identified by separating tryptic-digested NS1 by reverse-phase high pressure liquid chromatography and analysing the resulting peptide peaks by protein sequencing, amino acid analysis and/or electrospray mass spectrometry. The pairing arrangements between the six amino-terminal cysteines were identified as follows: Cys(4)-Cys(15), Cys(55)-Cys(143) and Cys(179)-Cys(223). Although the pairing arrangements between the six carboxyterminal cysteines were not determined, we were able to eliminate several cysteine-pairing combinations. Furthermore, we demonstrated that all three putative N-linked glycosylation sites of NS1 are utilized and that the Asn(207) glycosylation site contains a mannose-rich glycan.
Resumo:
Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four district groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.
Resumo:
The discipline of public health and preventive medicine in Australia and New Zealand had its genesis in the advocacy of 18th and 19th century military pioneers. Military (Royal Navy and British Army) surgeons were posted to Australia as part of their non-discretionary duty. Civilian doctors emigrated variously for adventure, escapism and gold fever. One group, a particularly influential group disproportionate to their numbers, came in one sense as forced emigrants because of chronic respiratory disease in general, and tuberculosis in particular. Tuberculosis was an occupational hazard of 19th century medical and surgical practice throughout western Europe. This paper analyses six examples of such emigration which had, perhaps unforeseen at the time, significant results in the advancement of public health. Such emigration was in one sense voluntary, but in another was forced upon the victims in their quest for personal survival. In Australia, such medical individuals became leading advocates and successful catalysts for change in such diverse fields as social welfare, public health, the preventive aspects of medical practice, child health, nutrition and medical education. A number of such public health pioneers today have no physical memorials; but their influence is to be seen in the ethos of medical practice in Australia and New Zealand today. Their memory is further perpetuated in the names of Australian native wildflowers and trees that symbolise not only a healthy environment but the longterm investment, accrued with interest, of the institution of public health measures for which their advocacy achieved much success.
Resumo:
A possible role in RNA replication for interactions between conserved complementary (cyclization) sequences in the 5'- and 3'-terminal regions of Flavivirus RNA was previously suggested but never tested in vivo. Using the M-fold program for RNA secondary-structure predictions, we examined for the first time the base-pairing interactions between the covalently linked 5' genomic region (first similar to 160 nucleotides) and the 3' untranslated region (last similar to 115 nucleotides) for a range of mosquito borne Flavivirus species. Base-pairing occurred as predicted for the previously proposed conserved cyclization sequences. In order to obtain experimental evidence of the predicted interactions, the putative cyclization sequences (5' or 3') in the replicon RNA of the mosquito-borne Kunjin virus,were mutated either separately, to destroy base-pairing, or simultaneously, to restore the complementarity. None of the RNAs with separate mutations in only the 5' or only the 3' cyclization sequences was able to replicate after transfection into BHK cells, while replicon RNA with simultaneous compensatory mutations in both cyclization sequences was replication competent. This was detected by immunofluorescence for expression of the major nonstructural protein NS3 and by Northern blot analysis for amplification and accumulation of replicon RNA. We then used the M-fold program to analyze RNA secondary structure of the covalently linked 5'- and 3'-terminal regions of three tick borne virus species and identified a previously undescribed additional pair of conserved complementary sequences in locations similar to those of the mosquito borne species. They base-paired with DeltaG values of approximately -20 kcal, equivalent or greater in stability than those calculated for the originally proposed cyclization sequences. The results show that the base-pairing between 5' and 3' complementary sequences, rather than the nucleotide sequence per se, is essential for the replication of mosquito-borne Kunjin virus RNA and that more than one pair of cyclization sequences might be involved in the replication of the tick-borne Flavivirus species.
Resumo:
This report focuses mainly on the characterization of a Vero cell line stably expressing the flavivirus Kunjin (KUN) replicon C20SDrep (C20SDrepVero). We showed by immunofluorescence and cryoimmunoelectron microscopy that unique flavivirus-induced membrane structures, termed convoluted membranes/paracrystalline structures, were induced in the C20SDrepVero cells. These induced cytoplasmic foci were immunolabeled with KUN virus anti-NS3 antibodies and with antibodies to the cellular markers ERGIC53 (for the intermediate compartment) and protein disulfide isomerase (for the rough endoplasmic reticulum). However, in contrast to the large perinuclear inclusions observed by immunofluorescence with anti-double-stranded (ds)RNA antibodies in KUN virus-infected cells, the dsRNA in C20SDrepVero cells was localized to small isolated foci scattered throughout the cytoplasm, which were coincident with small foci dual-labeled with the trans-Golgi specific marker GaIT. importantly persistent expression of the KUN replicons in cells did not produce cytopathic effects, and the morphology of major host organelles (including Golgi, mitochondria, endoplasmic reticulum, and nucleus) was apparently unaffected. The amounts of plus- and minus-sense RNA synthesis in replicon cells were similar to those in KUN virus-infected cells until near the end of the latent period, but subsequently increases of about 10- and fourfold, respectively, occurred in infected cells. Virus-specified protein synthesis in C20SDrepVero cells was also about 10-fold greater than that in infected cells. When several KUN replicon cell lines were compared with respect to membrane induction, the relative efficiencies increased in parallel with increases in viral RNA and protein synthesis, consistent with the increases observed during the virus infectious cycle. Based on these observations, cell lines expressing less-efficient replicons may provide a useful tool to study early events in flavivirus RNA replication, which are difficult to assess in Virus infections. (C) 2001 Academic press.
Resumo:
Cobalamins are stored in high concentrations in the human liver and thus are available to participate in the regulation of hepatotropic virus functions. We show that cyanocobalamin (vitamin B12) inhibited the H(IV internal ribosome entry site (IRES)-dependent translation of a reporter gene in vitro in a dose-dependent manner without significantly affecting the cap-dependent mechanism. Vitamin B12 failed to inhibit translation by IRES elements from encephalomyocarditis virus (EMCV) or classical swine fever virus (CSFV), We also demonstrate a relationship between the total cobalamin concentration in human sera and HCV viral load (a measure of viral replication in the host), The mean viral load was two orders of magnitude greater when the serum cobalamin concentration was above 200 pM (P < 0.003), suggesting that the total cobalamin concentration in an HCV-infected liver is biologically significant in HCV replication.
Resumo:
A survey of the floors of 3001 empty sea cargo containers in storage was undertaken to estimate the quarantine risk of importing exotic insect pests into Australia, with special reference to pests of timber. More than 7400 live and dead insects were collected from 1174 containers. No live infestations of timber-feeding insects were recorded, but feeding damage detected in one floor indicates a low risk of importing colonies of timber pests in containers. The survey collection of dead insects demonstrates that containers are regularly exposed to economically important quarantinable insects, including timber pests (bostrichids, curculionids, cerambycids, siricids and termites), agricultural pests (including Adoretus sinicus, Adoretus sp., Carpophilus obsoletus and Philaenus spumarius), and nuisance pests (vespids and Solenopsis sp.). Stored product pests were found in more than 10% of containers. The assessment of pest risk associated with shipping containers is discussed in terms of the quantity and quality of opportunities for exotic insects to establish via this pathway.
Resumo:
Recombinant forms of the dengue 2 virus NS3 protease linked to a 40-residue co-factor, corresponding to part of NS2B, have been expressed in Escherichia coli and shown to be active against para-nitroanilide substrates comprising the P6-P1 residues of four substrate cleavage sequences. The enzyme is inactive alone or after the addition of a putative 13-residue co-factor peptide but is active when fused to the 40-residue co-factor, by either a cleavable or a noncleavable glycine linker. The NS4B/NS5 cleavage site was processed most readily, with optimal processing conditions being pH 9, I = 10 mm, 1 mm CHAPS, 20% glycerol. A longer 10-residue peptide corresponding to the NS2B/NS3 cleavage site (P6-P4') was a poorer substrate than the hexapeptide (P6-P1) para-nitroanilide substrate under these conditions, suggesting that the prime side substrate residues did not contribute significantly to protease binding. We also report the first inhibitors of a co-factor-complexed, catalytically active flavivirus NS3 protease. Aprotinin was the only standard serine protease inhibitor to be active, whereas a number of peptide substrate analogues were found to be competitive inhibitors at micromolar concentrations.
Resumo:
One hundred and eight samples from three cultivars of alfalfa were obtained from three cuttings in 1996-1998 to evaluate the relationship between crude protein (CP) and mineral concentrations of alfalfa with cutting and maturation. The CP content drastically decreased from 27.9 to 11.4% on DM with maturity. Highly positive correlations were observed between CP and K in the first and the second cutting of alfalfa. The Ca content remained almost constant throughout the growth period. Four multiparous Holstein cows were assigned an alfalfa silage diet or an orchardgrass silage diet from 3 weeks prepartum to 1 week postpartum to examine the effect on the mineral balance. In the prepartum and postpartum diet, the roughage to concentrate ratio was 70:30 and 50:50, with alfalfa being 50 and 100% of the roughage, respectively. The alfalfa contained 1.93% of K. No metabolic disorders occurred, but the body weight decreased drastically from 1 to 6 days postpartum with each diet because of the high milk production immediately after the parturition. Positive retention of N, Ca, P, Mg, and K was observed prepartum, whereas the cows had negative N and mineral retention from 2 to 4 days postpartum. The Ca and P absorption, and Mg retention of cows with the alfalfa diet were higher than with the grass diet. The plasma Ca and inorganic P were not affected by diet, but the plasma PTH at parturition and plasma hydroxyproline from 1 week prepartum to 1 week postpartum were higher with the alfalfa diet. These results suggest that the low K alfalfa is suitable not only to prevent the incidence of milk fever but also to increase Ca, P and Mg utilization of periparturient cows, but the mineral supplementation is needed for the postpartum cows immediately after the parturition. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Rheumatic fever (RF)/rheumatic heart disease (RHD) and post-streptococcal glomerulonephritis are thought to be autoimmune diseases, and follow group A streptococcal (GAS) infection. Different GAS M types have been associated with rheumatogenicity or nephritogenicity and categorized into either of two distinct classes (I or II) based on amino acid sequences present within the repeat region ('C' repeats) of the M protein. Sera from ARF patients have previously been shown to contain elevated levels of antibodies to the class I-specific epitope and myosin with the class I-specific antibodies also being cross-reactive to myosin, suggesting a disease association. This study shows that immunoreactivity of the class I-specific peptide and myosin does not differ between controls and acute RF (ARF)/RHD in populations that are highly endemic for GAS, raising the possibility that the association is related to GAS exposure, not the presence of ARF/RHD. Peptide inhibition studies suggest that the class I epitope may be conformational and residue 10 of the peptide is critical for antibody binding. We demonstrate that correlation of antibody levels between the class I and II epitope is due to class II-specific antibodies recognizing a common epitope with class I which is contained within the sequence RDL-ASRE. Our results suggest that antibody prevalence to class I and II epitopes and myosin is associated with GAS exposure, and that antibodies to these epitopes are not an indicator of disease nor a pathogenic factor in endemic populations.
Resumo:
We have previously reported successful trans-complementation of defective Kunjin virus genomic RNAs with a range of large lethal deletions in the nonstructural genes NSI, NS3, and NS5 (A. A. Khromykh et al., J. Virol. 74:3253-3263, 2000). In this study we have mapped further the minimal region in the NS5 gene essential for efficient trans-complementation of genome-length RNAs in repBHK cells to the first 316 of the 905 codons. To allow amplification and easy detection of complemented defective RNAs with deletions apparently affecting virus assembly, we have developed a dual replicon complementation system. In this system defective replicon RNAs with a deletion(s) in the nonstructural genes also encoded the puromycin resistance gene (PAC gene) and the reporter gene for beta-galactosidase (beta-Gal). Complementation of these defective replicon RNAs in repBHK cells resulted in expression of PAC and beta-Gal which allowed establishment of cell lines stably producing replicating defective RNAs by selection with puromycin and comparison of replication efficiencies of complemented defective RNAs by beta-Gal assay. Using this system we demonstrated that deletions in the C-terminal 434 codons of NS3 (codons 178 to 611) were complemented for RNA replication, while any deletions in the first 178 codons were not. None of the genome-length RNAs containing deletions in NS3 shown to be complementable for RNA replication produced secreted defective viruses during complementation in repBHK cells. In contrast, structural proteins produced from these complemented defective RNAs were able to package helper replicon RNA. The results define minimal regions in the NS3 and NS5 genes essential for the formation of complementable replication complex and show a requirement of NS3 in cis for virus assembly.
Resumo:
This review considers the current literature on the macro-mineral nutrition of the soon-to-calve, or transition, dairy cow. Calcium is the main focus, since milk fever (clinical hypocalcaemia) appears to be the most common mineral-related problem faced by the transition cow Australia-wide. The importance of minimising calcium intake and optimising the balance of the key dietary electrolytes, sodium, potassium, sulfate, and chloride, in the weeks before calving is highlighted. Excess dietary potassium can, in some situations, induce milk fever, perhaps even more effectively than excess calcium. Excess sodium remains under suspicion. In contrast, excess dietary chlorine and, to a lesser extent, sulfur can improve the ability of the cow to maintain calcium homeostasis. Diets that promote either a hypomagnesaemia or hyperphosphataemia have also the potential to precipitate milk fever at calving. Current prevention strategies focus on the use of forages with moderate to low levels of calcium, potassium, and sodium, and also rely on or utilise addition of chloride and sulfate in the form of 'anionic' feeds. Anionic salts are one example of an anionic feed. However, legitimate questions remain as to the effectiveness of anionic salts in pasture-feeding systems. The causes and prevention of milk fever are considered from the perspective of the variety of Australian feedbases. Impediments to the use of anionic feeds in Australia feeding systems are outlined. The potential for improving maternal reserves of calcium around calving to reduce the risk of milk fever is also discussed.
Resumo:
Infection with group A streptococci (GAS) can lead to rheumatic fever (RF) and rheumatic heart disease (RHD) which are a major health concern particularly in indigenous populations worldwide, and especially in Australian Aboriginals. A primary route of GAS infection is via the upper respiratory tract, and therefore, a major goal of research is the development of a mucosal-based GAS vaccine, The majority of the research to date has focused on the GAS M protein since immunity to GAS is mediated by M protein type-specific opsonic antibodies. There are two major impediments to the development of a vaccine-the variability in M proteins and the potential for the induction of an autoimmune response. To develop a safe and broad-based vaccine, we have therefore focused on the GAS M protein conserved C-region, and have identified peptides, J8 and the closely related J8 peptide (J14), which may be important in protective immunity to GAS infection. Using a mucosal animal model system, our data have shown a high degree of throat GAS colonisation in B10.BR mice 24 h following intranasal immunisation with the mucosal adjuvant, cholera toxin B subunit (CTB), and/or diptheria toxoid (dT) carrier, or PBS alone, and challenge with the M1 GAS strain. However, GAS colonisation of the throat was significantly reduced following intranasal immunisation of mice with the vaccine candidate J8 conjugated to dT or J14-dT when administered with CTB. Moreover, J8-dT/CTB and J14-dT/CTB-immunised mice had a significantly higher survival when compared to CTB and PBS-immunised control mice. These data indicate that immunity to GAS infection can be evoked by intranasal immunisation with a GAS M protein C-region peptide vaccine that contains a protective B cell epitope and lacks a T cell autoepitope. (C) 2002 Published by Elsevier Science Ltd.