38 resultados para Rice farming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The movements of the ricefield rats (Rattus argentiventer) near a trap-barrier system (TBS) were assessed in lowland flood-irrigated rice crops in West Java, Indonesia, to test the hypothesis that a TBS with a 'trap-crop' modifies the movements of rats within 200 m from the trap-crop. The home range use and locations of rat burrows were assessed using radiotelemetry at two sites, one with a TBS with trap-crop (Treatment site, the crop inside the fence was planted 3 weeks earlier than the surrounding crop) and the other with a TBS without trap-crop (Control site, the crop inside the fence was planted at the same time as the surrounding crop). Each TBS was a 50 x 50 m plastic fence with eight multiple-capture rat traps set at the base. More than 700 rats were caught in the TBS with trap-crop, whereas only 10 rats were caught in the TBS without trap-crop. The home range size of females was significantly smaller at the Treatment site (0.96 ha) than the Control site (2.99 ha), but there was no difference for males. Seventy-eight per cent of rats caught in the TBS and fitted with radiocollars had their daytime burrow locations within 200 m of the TBS. We could not determine if the rats caught in the TBS were residents or transients according to demographic parameters. Our results support the hypothesis that a TBS with a trap-crop protects the surrounding rice crop out to a distance of at least 200 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agriculture in limited resource areas is characterized by small farms which an generally too small to adequately support the needs of an average farm family. The farming operation can be described as a low input cropping system with the main energy source being manual labor, draught animals and in some areas hand tractors. These farming systems are the most important contributor to the national economy of many developing countries. The role of tillage is similar in dryland agricultural systems in both the high input (HICS) and low input cropping systems (LICS), however, wet cultivation or puddling is unique to lowland rice-based systems in low input cropping systems. Evidence suggest that tillage may result in marginal increases in crop yield in the short term, however, in the longer term it may be neutral or give rise to yield decreases associated with soil structural degradation. On marginal soils, tillage may be required to prepare suitable seedbeds or to release adequate Nitrogen through mineralization, but in the longer term, however, tillage reduces soil organic matter content, increases soil erodibility and the emission of greenhouse gases. Tillage in low input cropping systems involves a very large proportion of the population and any changes: in current practices such as increased mechanization will have a large social impact such as increased unemployment and increasing feminization of poverty, as mechanization may actually reduce jobs for women. Rapid mechanization is likely to result in failures, but slower change, accompanied by measures to provide alternative rural employment, might be beneficial. Agriculture in limited resource areas must produce the food and fiber needs of their community, and its future depends on the development of sustainable tillage/cropping systems that are suitable for the soil and climatic conditions. These should be based on sound biophysical principles and meet the needs of and he acceptable to the farming communities. Some of the principle requirements for a sustainable system includes the maintenance of soil health, an increase in the rain water use efficiency of the system, increased use of fertilizer and the prevention of erosion. The maintenance of crop residues on the surface is paramount for meeting these requirements, and the competing use of crop residues must be met from other sources. These requirements can be met within a zonal tillage system combined with suitable agroforestry, which will reduce the need for crop residues. It is, however, essential that farmers participate in the development of any new technologies to ensure adoption of the new system. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperature during panicle development in rice increases spikelet sterility. This effect is exacerbated by high rates of nitrogen (N) application in the field. Spikelet sterility induced by low temperature and N fertilisation was examined in glasshouse experiments to clarify the mechanisms involved. In two glasshouse experiments, 12-h periods of low (18/13degreesC) and high (28/23degreesC) day/night temperatures were imposed over periods of 5-7 days during panicle development, to determine the effects of low temperature and N fertilisation on spikelet sterility. In one experiment, 50% sunlight was imposed together with low temperature to investigate the additive effects of reduced solar radiation and low temperature. The effect of increased tillering due to N fertilisation was examined by a tiller removal treatment in the same experiment. Pollen grain number and spikelet sterility were recorded at heading and harvest, respectively. Although there was no significant effect of low temperature on spikelet sterility in the absence of applied N, low temperature greatly increased spikelet sterility as a result of a reduction in the number of engorged pollen grains per anther in the presence of applied N. Spikelet sterility was strongly correlated with the number of engorged pollen grains per anther. Low temperature during very early ( late stage of spikelet differentiation-pollen mother cell stage) and peak ( second meiotic division stage-early stage of extine formation) microspore development caused a severe reduction in engorged pollen production mainly as a result of reduced total pollen production. Unlike low temperature, the effect of shading was rather small. The increased tillering due to application of high rates of N, increased both spikelet number per plant and spikelet sterility under low temperature conditions. The removal of tillers as they appeared reduced the number of total spikelets per plant and maintained a large number of engorged pollen grains per anther which, in turn, reduced spikelet sterility. The number of engorged pollen grains per anther determined the numbers of intercepted and germinated pollen grains on the stigma. It is concluded that N increased tillering and spikelet number per plant and this, in turn, reduced the number of engorged pollen grains per anther, leading into increased spikelet sterility under low temperature condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperatures impose restrictions on rice (Oryza sativa L.) production at high latitudes. This study is related to low temperature damage that can arise mid-season during the panicle development phase. The objective of this study was to determine whether low temperature experienced by the root, panicle, or foliage is responsible for increased spikelet sterility. In temperature-controlled glasshouse experiments, water depth, and water and air temperatures, were changed independently to investigate the effects of low temperature in the root, panicle, and foliage during microspore development on spikelet sterility. The total number of pollen and number of engorged pollen grains per anther, and the number of intercepted and germinated pollen grains per stigma, were measured. Spikelet sterility was then analysed in relation to the total number of pollen grains per spikelet and the efficiency with which these pollen grains became engorged, were intercepted by the stigma, germinated, and were involved in fertilisation. There was a significant combined effect of average minimum panicle and root temperatures on spikelet sterility that accounted for 86% of the variation in spikelet sterility. Total number of pollen grains per anther was reduced by low panicle temperature, but not by low root temperature. Whereas engorgement efficiency ( the percentage of pollen grains that were engorged) was determined by both root and panicle temperature, germination efficiency (the percentage of germinated pollen grains relative to the number of engorged pollen grains intercepted by the stigma) was determined only by root temperature. Interception efficiency (i.e. percentage of engorged pollen grains intercepted by the stigma), however, was not affected by either root or panicle temperature. Engorgement efficiency was the dominant factor explaining the variation in spikelet sterility. It is concluded that both panicle and root temperature affect spikelet sterility in rice when the plant encounters low temperatures during the microspore development stage.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smallholder farming systems in Papua New Guinea are characterised by an integrated set of cash cropping and subsistence food cropping activities. In the Highlands provinces, the subsistence food crop sub-system is dominated by sweet potato production. Coffee dominates the cash cropping sub-system, but a limited number of food crops are also grown for cash sale. The dynamics between sub-systems can influence the scope for complementarity between, and technical efficiency of, their operations, especially in light of the seasonality of demand for household labour and management inputs within the farming system. A crucial element of these dynamic processes is diversification into commercial agricultural production, which can influence factor productivity and the efficiency of crop production where smallholders maintain a strong production base in subsistence foods. In this study we use survey data from households engaged in coffee and food crop production in the Benabena district of Eastern Highlands Province to derive technical efficiency indices for each household over two years. A stochastic input distance function approach is used to establish whether diversification economies exist and whether specialisation in coffee, subsistence food or cash food production significantly influences technical efficiency on the sampled smallholdings. Diversification economics are weakly evident between subsistence food production and both coffee and cash food production, but diseconomies of diversification are discerned between coffee and cash food production. A number of factors are tested for their effects on technical efficiency. Significant technical efficiency gains are made from diversification among broad cropping enterprises.