141 resultados para Reverse takeover
Resumo:
We sequenced cDNAs coding for chicken cellular nucleic acid binding protein (CNBP). Two slightly different variations of the open reading frame were found, each of which translates into a protein with seven zinc finger domains. The longest transcript contains an in-frame insert of 3 bp. The sequence conservation between chick CNBP cDNAs with human, rat and mouse CNBP cDNAs is extreme, especially in the coding region, where the deduced amino acid sequence identity with human, rat and mouse CNBP is 99%. CNBP-like transcripts were also found in various tissues from insect, shrimp, fish and lizard. Regions with remarkable nucleotide conservation were also found in the 3' untranslated region, indicating important functions for these regions. Quantitative reverse transcription polymerase chain reaction (RT-PCR) indicated that in the chick, CNBP is present in all tissues examined in approximately equal ratios to total RNA. RT-PCR of total RNA isolated from different phyla indicate CNBP-like proteins art widespread throughout the animal kingdom. The extraordinary level of conservation suggests an important physiological role for CNBP. (C) 1997 Elsevier Science Inc.
Resumo:
Messenger RNAs coding for growth factors and receptor tyrosine kinases were measured by quantitative competitive and by semi-quantitative reverse-transcription polymerase chain reaction in whole and dissected chick inner ears. The fibroblast growth factor (FGF) receptor 1 chick embryonic kinase (CEK) 1 was expressed in all structures examined (otocyst, hatchling whole cochlea, cochlear nerve ganglion, and cochlear and vestibular sensory epithelia), although slightly more heavily in the otocyst. The related fibroblast growth factor receptors CEK 2 and 3 were preferentially expressed in the nerve ganglion and in the vestibular sensory epithelium, respectively. FGF 1 mRNA was low in early development, increasing to mature levels at around embryonic age 11 days, while FGF2, mRNA was expressed at constant levels at all ages. In response to ototoxic damage, FGF1 mRNA levels were increased in the early damaged cochlear sensory epithelium. Immunohistochemistry for CEK1 showed that normal hair cells expressed the receptor heavily on the hair cell stereocilia, while with early damage, CEK1 came to be expressed heavily on the apical surfaces of the supporting cells. In normal chicks, the CEK4 and CEK8 eph-class receptor tyrosine kinases were expressed relatively heavily by the cochlear nerve ganglion, and CEK10 was expressed relatively heavily by the cochlear hair cell sensory epithelium. The results suggest that the FGF system may be involved in the response of the cochlear epithelium to ototoxic damage. The eph-class receptor tyrosine kinase CEK10 may be involved in cell interactions in the cochlear sensory epithelium, while CEK4 and CEK8 may play a role in the cochlear innervation.
Resumo:
Seven cysteine-rich repeats form the ligand-binding region of the low-density lipoprotein (LDL) receptor. Each of these repeats is assumed to bind a calcium ion, which is needed for association of the receptor with its ligands, LDL and beta-VLDL. The effects of metal ions on the folding of the reduced N-terminal cysteine-rich repeat have been examined by using reverse-phase high-performance liquid chromatography to follow the formation of fully oxidized isomers with different disulfide connectivities. in the absence of calcium many of the 15 possible isomers formed on oxidation, whereas in its presence the predominant product at equilibrium had the native disulfide bond connectivities. Other metals were far less effective at directing disulfide bond formation: Mn2+ partly mimicked the action of Ca2+, but Ba2+, Sr2+, and Mg2+ had little effect. This metal-ion specificity was also observed in two-dimensional H-1 NMR spectral studies: only Ca2+ induced the native three-dimensional fold. The two paramagnetic ions, Gd3+ and Mn2+, and Cd2+ did not promote adoption of a well-defined structure, and the two paramagnetic ions did not displace calcium ions. The location of calcium ion binding sites in the repeat was also explored by NMR spectroscopy. The absence of chemical shift changes for the side chain proton resonances of Asp26, Asp36, and Glu37 from pH 3.9 to 6.8 in the presence of calcium ions and their proximal location in the NMR structures implicated these side chains as calcium ligands. Deuterium exchange NMR experiments also revealed a network of hydrogen bonds that stabilizes the putative calcium-binding loop.
Resumo:
The human aryl sulfotransferases HAST4 and HAST4v vary by only two amino acids but exhibit markedly different affinity towards the sulfonate acceptor p-nitrophenol and the sulfonate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS). To determine the importance of each of these amino acid differences, chimeric constructs were made of HAST4 and HAST4v. By attaching the last 120 amino acids of HAST-4v to HAST4 (changing Thr235 to Asn235) we have been able to produce a protein that has a K-m for PAPS similar to HAST4v. The reverse construct, HAST4v/4 produces a protein with a K-m for PAPS similar to HAST4. These data suggests that the COOH-terminal of sulfotransferases is involved in co-factor binding. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Symbiotic Aiptasia pulchella and freshly isolated zooxanthellae were incubated in (NaHCO3)-C-14 and NH4Cl for 1 to 240 min, and samples were analysed by reverse-phase high-performance liquid chromatography (HPLC) and an online radiochemical detector. NH4+ was first assimilated into C-14-glutamate and C-14-glutamine in the zooxanthellae residing in A. pulchella. The specific activities (dpm nmol(-1)) of C-14-glutamate and C-14-glutamine in vivo, were far greater in the zooxanthellae than in the host tissue, indicating that NH4+ was principally incorporated into the glutamate and glutamine pools of the zooxanthellae. C-14-alpha-ketoglutarate was taken up from the medium by intact A. pulchella and assimilated into a small amount of C-14-glutamate in the host tissue, but no C-14-glutamine was detected in the host fraction. The C-14-glutamate that was synthesized was most likely produced from transamination reactions as opposed to the direct assimilation of NH4+. The free aminoacid composition of the host tissue and zooxanthellae of A. pulchella was also measured. The results presented here demonstrate that NH4+ was initially assimilated by the zooxanthellae of A. pulchella.
Resumo:
Segregation of mRNAs in the cytoplasm of polar cells has been demonstrated for proteins involved in Xenopus and Drosophila oogenesis, and for some proteins in somatic cells. It is assumed that vectorial transport of the messages is generally responsible for this localization. The mRNA encoding the basic protein of central nervous system myelin is selectively transported to the distal ends of the processes of oligodendrocytes, where it is anchored to the myelin membrane and translated. This transport is dependent on a 21-nucleotide cis-acting segment of the 3'-untranslated region (RTS). Proteins that bind to this cis-acting segment have now been isolated from extracts of rat brain. A group of six 35-42-kDa proteins bind to a 35-base oligoribonucleotide incorporating the RTS, but not to several oligoribonucleotides with the same composition but randomized sequences, thus establishing specificity for the base sequence in the RTS. The most abundant of these proteins has been identified, by Edman sequencing of tryptic peptides and mass spectroscopy, as heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a 36-kDa member of a family of proteins that are primarily, but not solely, intranuclear. This protein was most abundant in samples from rat brain and testis, with lower amounts in other tissues. It was separated from the other polypeptides by using reverse-phase HPLC and shown to retain preferential association with the RTS. In cultured oligodendrocytes, hnRNP A2 was demonstrated by confocal microscopy to be distributed throughout the nucleus, cell soma, and processes.
Resumo:
The hydroxymethylbilane synthase (HMBS) mRNAs from 44 control individuals and 30 patients suffering from acute intermittent porphyria (AIP), were screened for length differences by reverse transcriptase polymerase chain reaction (RT-PCR) and any abnormalities were characterized by direct sequencing. Examination of the mRNAs extracted from the peripheral blood lymphocytes of the samples revealed varying degrees of alternative splicing, involving the removal of exons 3 and 12. Approximately 10-50% of the mRNA molecules were affected, despite the absence of genomic splice site mutations or any major deviance from consensus splice sequence values. The preliminary data obtained from this study suggest that this event is a normal occurrence in peripheral blood lymphocytes, and may not be associated with the molecular pathology responsible for AIP. (C) 1998 Academic Press Limited.
Resumo:
Field collected flies were screened for the presence of rabbit haemorrhagic disease virus (RHDV) by applying reverse transcriptase PCR (RT-PCR) in which primers specific to the capsid protein of the virus were used. The virus was detected in flies from locations where rabbit haemorrhagic disease (RHD) was reported and also soon after the release of RHDV in a 'clean' area. Oral and/or anal excretions of flies (flyspots) were found to contain viable virus and oral inoculation of rabbits revealed that a single flyspot was able to cause RHD. We conclude that flyspots are a major potential source of the virus for oral or conjunctival transmission of the virus to rabbits. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Parkinson's disease (PD) is a neurodegenerative movement disorder primarily due to basal ganglia dysfunction. While much research has been conducted on Parkinsonian deficits in the traditional arena of musculoskeletal limb movement, research in other functional motor tasks is lacking. The present study examined articulation in PD with increasingly complex sequences of articulatory movement. Of interest was whether dysfunction would affect articulation in the same manner as in limb-movement impairment. In particular, since very Similar (homogeneous) articulatory sequences (the tongue twister effect) are more difficult for healthy individuals to achieve than dissimilar (heterogeneous) gestures, while the reverse may apply for skeletal movements in PD, we asked which factor would dominate when PD patients articulated various grades of artificial tongue twisters: the influence of disease or a possible difference between the two motor systems. Execution was especially impaired when articulation involved a sequence of motor program heterogeneous in terms of place of articulation. The results are suggestive of a hypokinesic tendency in complex sequential articulatory movement as in limb movement. It appears that PD patients do show abnormalities in articulatory movement which are similar to those of the musculoskeletal system. The present study suggests that an underlying disease effect modulates movement impairment across different functional motor systems. (C) 1998 Academic Press.
Resumo:
Activation of the human complement system of plasma proteins in response to infection or injury produces a 4-helix bundle glycoprotein (74 amino acids) known as C5a. C5a binds to G-protein-coupled receptors on cell surfaces triggering receptor-ligand internalization, signal transduction, and powerful inflammatory responses. Since excessive levels of C5a are associated with autoimmune and chronic inflammatory disorders, inhibitors of receptor activation may have therapeutic potential. We now report solution structures and receptor-binding and antagonist activities for some of the first small molecule antagonists of C5a derived from its hexapeptide C terminus. The antagonist NMe-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H (1) surprisingly shows an unusually well-defined solution structure as determined by H-1 NMR spectroscopy. This is one of the smallest acyclic peptides found to possess a defined solution conformation, which can be explained by the constraining role of intramolecular hydrogen bonding. NOE and coupling constant data, slow deuterium exchange, and a low dependence on temperature for the chemical shift of the D-Cha-NH strongly indicate an inverse gamma turn stabilized by a D-Cha-NH ... OC-Lys hydrogen bond. Smaller conformational populations are associated with a hydrogen bond between Trp-NH ... OC-Lys, defining a type II beta turn distorted by the inverse gamma turn incorporated within it. An excellent correlation between receptor-affinity and antagonist activity is indicated for a limited set of synthetic peptides. Conversion of the C-terminal carboxylate of 1 to an amide decreases antagonist potency 5-fold, but potency is increased up to 10-fold over 1 if the amide bond is made between the C-terminal carboxylate and a Lys/Orn side chain to form a cyclic analogue. The solution structure of cycle 6 also shows gamma and beta turns; however, the latter occurs in a different position, and there are clear conformational changes in 6 vs 1 that result in enhanced activity. These results indicate that potent C5a antagonists can be developed by targeting site 2 alone of the C5a receptor and define a novel pharmacophore for developing powerful receptor probes or drug candidates.
Resumo:
This report details a reliable and efficient RNA extraction protocol for the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal (Gymnodiniales, Dinophyceae). The method typically gives yields of 500 mu g total RNA from 0.4 g wet weight of algae, and, in comparison to current protocols, it is technically simple and less time consuming. This method isolates high-quality, intact RNA from in vine cultured as well as host-isolated cells, as demonstrated by spectrophotometry, gel electrophoresis, and northern analysis. The total RNA obtained was suitable for reverse transcription and PCR amplification of Symbiodinium cDNAs. We have successfully applied our method to isolate total RNA from a different dinoflagellate, Amphidinium carterae Hulburt (Gymnodiniales, Dinophyceae), found in symbiotic association with marine invertebrates.
Resumo:
The spectrum of protein tyrosine phosphatases (PTPs) expressed in bone marrow-derived murine macrophages (BMMs) was examined using reverse transcriptase-polymerase chain reaction. Ten different PTP cDNAs were isolated and in this study we focus on mDEP-1, a type III receptor PTP. Three mDEP-1 transcripts were expressed in primary macrophages and macrophage cell lines and were induced during macrophage differentiation of M1 myeloid leukemia cells. A valiant mRNA Tvas identified that encodes an alternate carboxyl-terminus and 3' UTR. The expression of mDEP-1 was down-regulated by CSF-1 (macrophage colony-stimulating factor) and up-regulated by bacterial lipopolysaccharide, an important physiological regulator of macrophage function that opposes CSF-1 action. Whole mount irt situ hybridization, and immunolocalization of the protein, confirmed that mDEP-1 is expressed by a subset of embryonic macrophages in the liver and mesenchyme. mDEP-1 was also detected in the eye and peripheral nervous system of the developing embryo. Attempts to express mDEP-1 constitutively in the macrophage cell line RAW264 were unsuccessful, with results suggesting that the gene product inhibits cell proliferation.
Resumo:
Analysis of the structure of the urochordate Herdmania curvata ribosomal DNA intergenic spacer (IGS) and its role in transcription initiation and termination suggests that rRNA gene regulation in this chordate differs from that in vertebrates. A cloned H, curvata IGS is 1881 bp and composed predominantly of two classes of similar repeat sequences that largely alternate in a tandem array. Southern blot hybridization demonstrates that the IGS length variation within an individual and population is largely the result of changes in internal repeat number. Nuclease S1 mapping and primer extension analyses suggest that there are two transcription initiation sites at the 3' end of the most 3' repetitive element; these sites are 6 nucleotides apart. Unlike mouse, Xenopus, and Drosophila, there is no evidence of transcription starting elsewhere in the IGS. Most sequence differences between the promoter repeat and the other internal repeats are in the vicinity of the putative initiation sites. As in Drosophila, nuclease S1 mapping of transcription termination sites suggest that there is not a definitive stop site and a majority of the pre-rRNAs read through a substantial portion of the IGS. Some transcription appears to proceed completely through the promoter repeat into the adjacent rDNA unit. Analysis of oocyte RNA by reverse transcription-polymerase chain reaction (RT-PCR) confirms that readthrough transcription into the adjacent rDNA unit is occurring in some small IGS length variants; there is no evidence of complete readthrough of IGSs larger than 1.0 kb.
Resumo:
Polymerase chain reaction (PCR)-based differential display was used to screen for alterations in gene expression in the mesolimbic system of the human alcoholic brain. Total RNA was extracted from the nucleus accumbens of five alcoholic and five control brains. A selected subpopulation of mRNA was reverse-transcribed to cDNA and amplified by PCR. A differentially expressed cDNA fragment was recovered, cloned, and sequenced. Full sequence analysis of this 467 bp fragment revealed 98.2% homology with the human mitochondrial 12S rRNA gene. Dot-blot analysis showed increased expression of this gem in nucleus accumbens and hippocampus, but not in the superior frontal cortex, primary motor cortex, caudate, and pallidus/putamen In a total of eight human alcoholic brains, compared with seven control brains. A similar increased expression was observed by dot-blot analysis, using RNA from the cerebral cortex of rats chronically treated with alcohol vapor. Hybridization of a 16S rRNA oligonucleotide probe indicated that the expression of both rRNAs genes was significantly increased in nucleus accumbens. These results indicate that chronic alcohol consumption induces alteration in expression of mitochondrial genes in selected brain regions. The altered gene expression may reflect mitochondrial dysfunction In the alcohol-affected brain.
Resumo:
Rapid and sensitive polymerase chain reaction (PCR) methods ape described for determination of the two 16 S rDNA subgroups of Ralstonia solanacearum, the causal agent of bacterial wilt. A third subgroup consisting of Indonesian R. solanacearum isolates belonging to Division II, the blood disease bacterium and Pseudomonas syzygii can also be identified. Primers were designed to sequences within R, solanacearum 16 S rDNA (equivalent to Escherichia coli 16 S rDNA positions 74-97, 455-475, 1454-1474), and the internal transcribed spacer region between the 16 S and 23 S rDNA genes. Different combinations of forward and reverse primers allowed selective PCR amplification of (a) R. solanacearum Division I (biovars 3, 4 and 5), (b) Division TI (biovars 1, N2, and 2) including the blood disease bacterium and P. syzygii, or (c) amplification of Division II only except for five biovar 1, 2 or N2 isolates of R. solanacearum from Indonesia, P. syzygii and the BDB. A total of 104 R. solanacearum, 14 blood disease bacterium and 10 P. syzygii isolates were tested. Simultaneous detection of species and subdivision was achieved by designing a multiplex PCR test in which a 288-base pair (bp) band is produced by all R. solanacearum isolates, and an additional 409-bp band in Division I strains.