44 resultados para Relative growth rate


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth dynamics of green sea turtles resident in four separate foraging grounds of the southern Great Barrier Reef genetic stock were assessed using a nonparametric regression modeling approach. Juveniles recruit to these grounds at the same size, but grow at foraging-ground-dependent rates that result in significant differences in expected size- or age-at-maturity. Mean age-at-maturity was estimated to vary from 25-50 years depending on the ground. This stock comprises mainly the same mtDNA haplotype, so geographic variability might be due to local environmental conditions rather than genetic factors, although the variability was not a function of latitudinal variation in environmental conditions or whether the food stock was seagrass or algae. Temporal variability in growth rates was evident in response to local environmental stochasticity, so geographic variability might be due to local food stock dynamics. Despite such variability, the expected size-specific growth rate function at all grounds displayed a similar nonmonotonic growth pattern with a juvenile growth spurt at 60-70 cm curved carapace length, (CCL) or 15-20 years of age. Sex-specific growth differences were also evident with females tending to grow faster than similar-sized males after the Juvenile growth spurt. It is clear that slow sex-specific growth displaying both spatial and temporal variability and a juvenile growth spurt are distinct growth behaviors of green turtles from this stock.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. We analysed time-series data from populations of red kangaroos (Macropus rufus, Desmarest) inhabiting four areas in the pastoral zone of South Australia. We formulated a set of a priori models to disentangle the relative effects of the covariates: rainfall, harvesting, intraspecific competition, and domestic herbivores, on kangaroo population-growth rate. 2. The statistical framework allowed for spatial variation in the growth-rate parameters, response to covariates, and environmental variability, as well as spatially correlated error terms due to shared environment. 3. The most parsimonious model included all covariates but no area-specific parameter values, suggesting that kangaroo densities respond in the same way to the covariates across the areas. 4. The temporal dynamics were spatially correlated, even after taking into account the potentially synchronizing effect of rainfall, harvesting and domestic herbivores. 5. Counter-intuitively, we found a positive rather than negative effect of domestic herbivore density on the population-growth rate of kangaroos. We hypothesize that this effect is caused by sheep and cattle acting as a surrogate for resource availability beyond rainfall. 6. Even though our system is well studied, we must conclude that approximating resources by surrogates such as rainfall is more difficult than previously thought. This is an important message for studies of consumer-resource systems and highlights the need to be explicit about population processes when analysing population patterns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of the tumour-forming disease, fibropapillomatosis, on the somatic growth dynamics of green turtles resident in the Pala'au foraging grounds (Moloka'i, Hawai'i) was evaluated using a Bayesian generalised additive mixed modelling approach. This regression model enabled us to account for fixed effects (fibropapilloma tumour severity), nonlinear covariate functional form (carapace size, sampling year) as well as random effects due to individual heterogeneity and correlation between repeated growth measurements on some turtles. Somatic growth rates were found to be nonlinear functions of carapace size and sampling year but were not a function of low-to-moderate tumour severity. On the other hand, growth rates were significantly lower for turtles with advanced fibropapillomatosis, which suggests a limited or threshold-specific disease effect. However, tumour severity was an increasing function of carapace size-larger turtles tended to have higher tumour severity scores, presumably due to longer exposure of larger (older) turtles to the factors that cause the disease. Hence turtles with advanced fibropapillomatosis tended to be the larger turtles, which confounds size and tumour severity in this study. But somatic growth rates for the Pala'au population have also declined since the mid-1980s (sampling year effect) while disease prevalence and severity increased from the mid-1980s before levelling off by the mid-1990s. It is unlikely that this decline was related to the increasing tumour severity because growth rates have also declined over the last 10-20 years for other green turtle populations resident in Hawaiian waters that have low or no disease prevalence. The declining somatic growth rate trends evident in the Hawaiian stock are more likely a density-dependent effect caused by a dramatic increase in abundance by this once-seriously-depleted stock since the mid-1980s. So despite increasing fibropapillomatosis risk over the last 20 years, only a limited effect on somatic growth dynamics was apparent and the Hawaiian green turtle stock continues to increase in abundance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We construct a simple growth model where agents with uncertain survival choose schooling time, life-cycle consumption and the number of children. We show that rising longevity reduces fertility but raises saving, schooling time and the growth rate at a diminishing rate. Cross-section analyses using data from 76 countries support these propositions: life expectancy has a significant positive effect on the saving rate, secondary school enrollment and growth but a significant negative effect on fertility. Through sensitivity analyses, the effect on the saving rate is inconclusive, while the effects on the other variables are robust and consistent. These estimated effects are decreasing in life expectancy. Copyright The editors of the Scandinavian Journal of Economics 2005.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an overlapping generations model with physical and human capital and income inequality. It shows that inequality impedes output growth by directly harming capital accumulation and indirectly raising the ratio of physical to human capital. The convergence speed of output growth equals the lower of the convergence speeds of the relative capital ratio and inequality, and varies with initial states. Among economies with the same balanced growth rate but different initial income levels, the ranking of income can switch in favor of those starting from low inequality and a low ratio of physical to human capital, particularly if the growth rate converges slowly. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Investigation of the secondary nucleation threshold (SNT) of alpha-glucose monohydrate was conducted in aqueous solutions in agitated batch systems for the temperature range 10 to 40 degrees C. The width of the SNT decreased as the induction time increased and was found to be temperature independent when supersaturation was based on the absolute concentration driving force. Nonnucleating seeded batch bulk crystallizations of this sugar were performed isothermally in the same temperature range as the SNT experiments, and within the SNT region to avoid nucleation. The growth kinetics were found to be linearly dependent on the supersaturation of total glucose in the system when the mutarotation reaction is not rate limiting. The growth rate constant increases with increasing temperature and follows an Arrhenius relationship with an activation energy of 50 +/- 2 kJ/mol. alpha-Glucose monohydrate shows significant crystal growth rate dispersion (GRD). For the seeds used, the 95% range of growth rates was within a factor of 6 for seeds with a narrow particle size distribution, and 8 for seeds with a wider distribution that was used at 25 degrees C. The results will be used to model the significance of the mutarotation reaction on the overall crystallization rate of D-glucose in industrial crystallization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tropical abalone Haliotis asinina is a wild-caught and cultured species throughout the Indo-Pacific as well as being an emerging model species for the study of haliotids. H. asinina has the fastest recorded natural growth rate of any abalone and reaches sexual maturity within one year. As such, it is a suitable abalone species for selective breeding for commercially important traits such as rapid growth. Estimating the amount of variation in size that is attributable to heritable genetic differences can assist the development of such a selective breeding program. Here we estimated heritability for growth-related traits at 12 months of age by creating a single cohort of 84 families in a full-factorial mating design consisting of 14 sires and 6 dams. Of 500 progeny sampled, 465 were successfully assigned to their parents based on shared alleles at 5 polymorphic microsatellite loci. Using an animal model, heritability estimates were 0.48 +/- 0.15 for shell length, 0.38 +/- 0.13 for shell width and 0.36 +/- 0.13 for weight. Genetic correlations were > 0.98 between shell parameters and weight, indicating that breeding for weight gains could be successfully achieved by selecting for shell length. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The olive ridley is the most abundant seaturtle species in the world but little is known of the demography of this species. We used skeletochronological data on humerus diameter growth changes to estimate the age of North Pacific olive ridley seaturtles caught incidentally by pelagic longline fisheries operating near Hawaii and from dead turtles washed ashore on the main Hawaiian Islands. Two age estimation methods [ranking, correction factor (CF)] were used and yielded age estimates ranging from 5 to 38 and 7 to 24 years, respectively. Rank age-estimates are highly correlated (r = 0.93) with straight carapace length (SCL), CF age estimates are not (r = 0.62). We consider the CF age-estimates as biologically more plausible because of the disassociation of age and size. Using the CF age-estimates, we then estimate the median age at sexual maturity to be around 13 years old (mean carapace size c. 60 cm SCL) and found that somatic growth was negligible by 15 years of age. The expected age-specific growth rate function derived using numerical differentiation suggests at least one juvenile growth spurt at about 10–12 years of age when maximum age-specific growth rates, c. 5 cm SCL year−1, are apparent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanism of bainite growth has been investigated using in situ transmission electron microscopy observations. It was found that, in a number of alloys studied, a bainitic embryo is made of basic transformation units. These units are either a group of stacking faults or, in two dimensions, a series of parallelograms of different sizes. Thickening/widening of the bainite embryo takes place through shear along the stacking fault planes or twining planes. The bainite embryo is elongated by the formation of new transformation units at both tips of the bainite plate. The three-dimensional morphology of bainite is a convex tens-like lath. It is believed that the bainite embryo grows by shearing, which is controlled by the diffusion of solute atoms during the transformation. As the growth rate is much lower than that of martensite, it is therefore detectable. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth, maintenance and lysis processes of Nitrobacter were characterised. A Nitrobacter culture was enriched in a sequencing batch reactor (SBR). Fluorescent in situ hybridisation showed that Nitrobacter constituted 73% of the bacterial population. Batch tests were carried out to measure the oxygen uptake rate and/or nitrite consumption rate when both nitrite and CO2 were in excess, and in the absence of either of these two substrates. The results obtained, along with the SBR performance data, allowed the determination of the maintenance coefficient and in situ cell lysis rate of Nitrobacter. Nitrobacter spends a significant amount of energy for maintenance, which varies considerably with the specific growth rate. At maximum growth, Nitrobacter consume nitrite at a rate of 0.042 mgN/mgCOD(biomass)center dot h for maintenance purposes, which increases more than threefold to 0.143 mgN/mgCOD(biomass)center dot h in the absence of growth. In the SBR, where Nitrobacter grew at 40% of its maximum growth rate, a maintenance coefficient of 0.113 mgN/mgCOD center dot h was found, resulting in 42% of the total amount of nitrite being consumed for maintenance. The above three maintenance coefficient values obtained at different growth rates appear to support the maintenance model proposed in Pirt (1982). The in situ lysis rate of Nitrobacter was determined to be 0.07/day under aerobic conditions at 22 C and pH 7.3. Further, the maximum specific growth rate of Nitrobacter was estimated to be 0.02/h (0.48/day). The affinity constant of Nitrobacter with respect to nitrite was determined to be 1.50 mgNO(2)(-)-N/L, independent of the presence or absence of CO2. (c) 2006 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosolnonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO, were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14 - 0.16 mgN mgCOD(biomass)(-1) h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH7. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traditional sensitivity and elasticity analyses of matrix population models have been used to p inform management decisions, but they ignore the economic costs of manipulating vital rates. For exam le, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously, These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic parameters for performance traits in a pig population were estimated using a multi-trait derivative-free REML algorithm. The 2590 total data included 922 restrictively fed male and 1668 ad libitum fed female records. Estimates of heritability (standard error in parentheses) were 0.25 (0.03), 0.15 (0.03), and 0.30 (0.05) for lifetime daily gain, test daily gain, and P2-fat depth in males, respectively; and 0.27 (0.04) and 0.38 (0.05) for average daily gain and P2-fat depth in females, respectively. The genetic correlation between P2-fat depth and test daily gain in males was -0.17 (0.06) and between P2-fat and lifetime average daily gain in females 0.44 (0.09). Genetic correlations between sexes were 0.71 (0.11) for average daily gain and -0.30 (0.10) for P2-fat depth. Genetic response per standard deviation of selection on an index combining all traits was predicted at $AU120 per sow per year. Responses in daily gain and backfat were expected to be higher when using only male selection than when using only female selection. Selection for growth rate in males will improve growth rate and carcass leanness simultaneously.