34 resultados para Random regression
Resumo:
This study compared an enzyme-linked immunosorbent assay (ELISA) to a liquid chromatography-tandem mass spectrometry (LC/MS/MS) technique for measurement of tacrolimus concentrations in adult kidney and liver transplant recipients, and investigated how assay choice influenced pharmacokinetic parameter estimates and drug dosage decisions. Tacrolimus concentrations measured by both ELISA and LC/MS/MS from 29 kidney (n = 98 samples) and 27 liver (n = 97 samples) transplant recipients were used to evaluate the performance of these methods in the clinical setting. Tacrolimus concentrations measured by the two techniques were compared via regression analysis. Population pharmacokinetic models were developed independently using ELISA and LC/MS/MS data from 76 kidney recipients. Derived kinetic parameters were used to formulate typical dosing regimens for concentration targeting. Dosage recommendations for the two assays were compared. The relation between LC/MS/MS and ELISA measurements was best described by the regression equation ELISA = 1.02 . (LC/MS/MS) + 0.14 in kidney recipients, and ELISA = 1.12 . (LC/MS/MS) - 0.87 in liver recipients. ELISA displayed less accuracy than LC/MS/MS at lower tacrolimus concentrations. Population pharmacokinetic models based on ELISA and LC/MS/MS data were similar with residual random errors of 4.1 ng/mL and 3.7 ng/mL, respectively. Assay choice gave rise to dosage prediction differences ranging from 0% to 30%. ELISA measurements of tacrolimus are not automatically interchangeable with LC/MS/MS values. Assay differences were greatest in adult liver recipients, probably reflecting periods of liver dysfunction and impaired biliary secretion of metabolites. While the majority of data collected in this study suggested assay differences in adult kidney recipients were minimal, findings of ELISA dosage underpredictions of up to 25% in the long term must be investigated further.
Resumo:
This paper presents a new approach to the LU decomposition method for the simulation of stationary and ergodic random fields. The approach overcomes the size limitations of LU and is suitable for any size simulation. The proposed approach can facilitate fast updating of generated realizations with new data, when appropriate, without repeating the full simulation process. Based on a novel column partitioning of the L matrix, expressed in terms of successive conditional covariance matrices, the approach presented here demonstrates that LU simulation is equivalent to the successive solution of kriging residual estimates plus random terms. Consequently, it can be used for the LU decomposition of matrices of any size. The simulation approach is termed conditional simulation by successive residuals as at each step, a small set (group) of random variables is simulated with a LU decomposition of a matrix of updated conditional covariance of residuals. The simulated group is then used to estimate residuals without the need to solve large systems of equations.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.