36 resultados para REVERSE-OSMOSIS MEMBRANES
Resumo:
The tat gene is required by HIV-1 for efficient reverse transcription and this function of Tat can be distinguished from its role in transcription by RNA polymerase II using tat point mutations that abrogate each function independently The mechanism of Tat's role in reverse transcription, however, is not known, nor is it known whether this role is conserved among trans-activating factors in other retroviruses. Here we examine the abilities of heterologous viral trans-activating proteins from jembrana disease virus (jTat), HIV-2 (Tat2), and equine infectious anemia virus (eTat) to substitute for HIV-1 Tat (Tat1) and restore reverse transcription in HIV-1 carrying an inactivated tat gene. Natural endogenous reverse transcription assays showed that trans-activators from some retroviruses (Tat2 and jTat, but not eTat) could substitute for Tat1 in complementation of HIV-1 reverse transcription. Finally, we show that Y47 is critical for Tat1 to function in reverse transcription, but not HIV-1 gene expression. We mutated the homologous position in jTat to H62Y and found it did not improve its ability to stimulate reverse transcription, but an H62A mutation did inhibit jTat complementation. These data highlight the finding that the role of Tat in reverse transcription is not related to trans-activation and demonstrate that other tat genes conserve this function. (C) 2002 Elsevier Science (USA).
Resumo:
During reverse transcription, the positive-strand HIV-1 RNA genome is converted into a double-stranded DNA copy which can be permanently integrated into the host cell genome. Recent analyses show that HIV-1 reverse transcription is a highly regulated process. The initiation reaction can be distinguished from a subsequent elongation reaction carried out by a reverse transcription complex composed of (at least) heterodimeric reverse transcriptase, cellular tRNA(lys3) and HIV-1 genomic RNA sequences. In addition, viral factors including Tat, Nef, Vif, Vpr, IN and NCp7, cellular proteins, and TAR RNA and other RNA stem-loop structures appear to influence this complex and contribute to the efficiency of the initiation reaction. As viral resistance to many antiretroviral compounds is a continuing problem, understanding the ways in which these factors influence the reverse transcription complex will likely lead to novel antiretroviral strategies. Copyright (C) 2001 John Wiley Sons, Ltd.
Resumo:
High quality MSS membranes were synthesised by a single-step and two-step catalysed hydrolyses employing tetraethylorthosilicate (TEOS), absolute ethanol (EtOH), I M nitric acid (HNO3) and distilled water (H2O). The Si-29 NMR results showed that the two-step xerogels consistently had more contribution of silanol groups (Q(3) and Q(2)) than the single-step xerogel. According to the fractal theory, high contribution of Q(2) and Q(3) species are responsible for the formation of weakly branched systems leading to low pore volume of microporous dimension. The transport of diffusing gases in these membranes is shown to be activated as the permeance increased with temperature. Albeit the permeance of He for both single-step and two-step membranes are very similar, the two-step membranes permselectivity (ideal separation factor) for He/CO2 (69-319) and He/CH4 (585-958) are one to two orders of magnitude higher than the single-step membranes results of 2-7 and 69, respectively. The two-step membranes have high activation energy for He and H-2 permeance, in excess of 16 kJ mol(-1). The mobility energy for He permeance is three to six-fold higher for the two-step than the single-step membranes. As the mobility energy is higher for small pores than large pores and coupled with the permselectivity results, the two-step catalysed hydrolysis sol-gel process resulted in the formation of pore sizes in the region of 3 Angstrom while the single-step process tended to produce slightly larger pores. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new RTE-like, non-long terminal repeat retrotransposon, termed SjR2, from the human blood fluke, Schistosoma japonicum, is described. SjR2 is similar to3.9 kb in length and is constituted of a single open reading frame encoding a polyprotein with apurinic/apyrimidinic endonuclease and reverse transcriptase domains. The open reading frame is bounded by 5'- and 3'-terininal untranslated regions and, at its 3-terminus, SjR2 bears a short (TGAC)(3) repeat. Phylogenetic analyses based on conserved domains of reverse transcriptase or endonuclease revealed that SjR2 belonged to the RTE clade of non-long terminal repeat retrotransposons. Further, SjR2 was homologous, but probably not orthologous, to SR2 front the African blood fluke, Schistosoma mansoni; this RTE-like family of non-long terminal repeat retrotransposons appears to have arisen before the divergence of the extant schistosome species. Hybridisation analyses indicated that similar to 10,000 copies of SjR2 were dispersed throughout the S. japonicum chromosomes, accounting for up to 14% of the nuclear genome. Messenger RNAs encoding the reverse transcriptase and endonuclease domains of SjR2 were detected in several developmental stages of the schistosome, indicating that the retrotransposon was actively replicating within the genome of the parasite. Exploration of the coding and non-coding regions of SjR2 revealed two notable characteristics. First, the recombinant reverse transcriptase domain of SjR2 expressed in insect cells primed reverse transcription of SjR2 mRNA in vitro. By contrast, recombinant SjR2-endonuclease did not appear to cleave schistosome or plasmid DNA. Second, the 5'-untranslated region of SjR2 was >80% identical to the 3-untranslated region of a schistosome heat shock protein-70 gene (hsp-70) in the antisense orientation, indicating that SjR2-like elements were probably inserted into the non-coding regions of ancestral S. japonicum HSP-70, probably after the species diverged from S. mansoni. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Background: In the presence of dNTPs, intact HIV-1 virions are capable of reverse transcribing at least part of their genome, a process known as natural endogenous reverse transcription (NERT). PCR analysis of virion DNA produced by NERT revealed that the first strand transfer reaction (1stST) was inefficient in intact virions, with minus strand (-) strong stop DNA (ssDNA) copy numbers up to 200 times higher than post-1stST products measured using primers in U3 and U5. This was in marked contrast to the efficiency of 1stST observed in single-round cell infection assays, in which (-) ssDNA and U3-U5 copy numbers were indistinguishable. Objectives: To investigate the reasons for the discrepancy in first strand transfer efficiency between intact cell-free virus and the infection process. Study design: Alterations of both NERT reactions and the conditions of cell infection were used to test whether uncoating and/or entry play a role in the discrepancy in first strand transfer efficiency. Results and Conclusions: The difference in 1stST efficiency could not be attributed simply to viral uncoating, since addition of very low concentrations of detergent to NERT reactions removed the viral envelope without disrupting the reverse transcription complex, and these conditions resulted in no improvement in 1stST efficiency. Virus pseudotyped with surface glycoproteins from either vesicular stomatitis virus or amphotrophic murine leukaemia virus also showed low levels of 1stST in low detergent NERT assays and equivalent levels of (-) ssDNA and 1stST in single-round infections of cells, demonstrating that the gp120-mediated infection process did not select for virions capable of carrying out 1stST. These data indicate that a post-entry event or factor may be involved in efficient HIV-1 reverse transcription in vivo. (C) 2002 Elsevier Science B.V. All rights reserved.