91 resultados para RESONANCE RAMAN MICROSCOPY
Resumo:
Magnetic resonance cholangiography (MRC) relies on the strong T-2 signal from stationary liquids, in this case bile, to generate images. No contrast agents are required, and the failure rate and risk of serious complications is lower than with endoscopic retrograde cholangiopancreatography (ERCP). Data from MRC can be summated to produce an image much like the cholangiogram obtained by using ERCP. In addition, MRC and conventional MRI can provide information about the biliary and other anatomy above and below a biliary obstruction. This provides information for therapeutic intervention that is probably most useful for hilar and intrahepatic biliary obstruction. Magnetic resonance cholangiography appears to be similar to ERCP with respect to sensitivity and specificity in detecting lesions causing biliary obstruction, and in the diagnosis of choledocholithiasis. It is also suited to the assessment of biliary anatomy (including the assessment of surgical bile-duct injuries) and intrahepatic biliary pathology. However, ERCP can be therapeutic as well as diagnostic, and MRC should be limited to situations where intervention is unlikely, where intrahepatic or hilar pathology is suspected, to delineate the biliary anatomy prior to other interventions, or after failed or inadequate ERCP. Magnetic resonance angiography (MRA) relies on the properties of flowing liquids to generate images. It is particularly suited to assessment of the hepatic vasculature and appears as good as conventional angiography. It has been shown to be useful in delineating vascular anatomy prior to liver transplantation or insertion of a transjugular intrahepatic portasystemic shunt. Magnetic resonance angiography may also be useful in predicting subsequent variceal haemorrhage in patients with oesophageal varices. (C) 2000 Blackwell Science Asia Pty Ltd.
Resumo:
Ischaemic preconditioning in rats was studied using MRI. Ischaemic preconditioning was induced, using an intraluminal filament method, by 30 min middle cerebral artery occlusion (MCAO), and imaged 24 h later. The secondary insult of 100 min MCAO was induced 3 days following preconditioning and imaged 24 and 72 h later. Twenty four hours following ischaemic preconditioning most rats showed small sub-cortical hyperintense regions not seen in sham-preconditioned rats. Twenty-four hours and 72 h following the secondary insult preconditioned animals showed significantly smaller lesions (24 h = 112 +/- 31 mm(3), mean +/- standard error; 72 h = 80 +/- 35 mm(3)) which were confined to the striatum, than controls (24 h = 234 +/- 32 mm(3), p = 0.026; 72 h = 275 +/- 37 mm(3), p = 0.003). In addition during Lesion maturation from 24 to 72 h post-secondary MCAO, preconditioned rats displayed an average reduction in lesion size as measured by MRI whereas sham-preconditioned rats displayed increases in lesion size; this is the first report of such differential lesion volume evolution in cerebral ischaemic preconditioning. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr3+-doped ZBLAN reveals that much of the broad resonance extending from g(eff) = 5.1 to g(eff) = 1.97, characteristic of X-band continuous wave EPR of Cr3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra.
Resumo:
The nuclear magnetic resonance (NMR) spin-spin relaxation time (T-2) is related to the radiation-dependent concentration of polymer formed in polymer gel dosimeters manufactured from monomers in an aqueous gelatin matrix. Changes in T-2 with time post-irradiation have been reported in the literature but their nature is not fully understood. We investigated those changes with time after irradiation using FT-Raman spectroscopy and the precise determination of T-2 at high magnetic field in a polymer gel dosimeter, A model of fast exchange of magnetization taking into account ongoing gelation and strengthening of the gelatin matrix as well as the polymerization of the monomers with time is presented. Published data on the changes of T-2 in gelatin gels as a function of post-manufacture time are used and fitted closely by the model presented. The same set of parameters characterizing the variations of T-2 in gelatin gels and the increasing concentration of polymer determined from Fr-Raman spectroscopy are used successfully in the modelling of irradiated polymer gel dosimeters. Minimal variations in T-2 in an irradiated PAG dosimeter are observed after 13 h.
Resumo:
The volume of the extracellular compartment (tubular system) within intact muscle fibres from cane toad and rat was measured under various conditions using confocal microscopy. Under physiological conditions at rest, the fractional volume of the tubular system (t-sys(Vol)) was 1.38 +/- 0.09% (n = 17),1.41 +/- 0.09% (n = 12) and 0.83 +/- 0.07% (n = 12) of the total fibre volume in the twitch fibres from toad iliofibularis muscle, rat extensor digitorum longus muscle and rat soleus muscle, respectively. In toad muscle fibres, the t-sys(Vol) decreased by 30% when the tubular system was fully depolarized and decreased by 15% when membrane cholesterol was depleted from the tubular system with methyl-beta-cyclodextrin but did not change as the sarcomere length was changed from 1.93 to 3.30 mum. There was also an increase by 30% and a decrease by 25% in t-sys(Vol) when toad fibres were equilibrated in solutions that were 2.5-fold hypertonic and 50% hypotonic, respectively. When the changes in total fibre volume were taken into consideration, the t-sys(Vol) expressed as a percentage of the isotonic fibre volume did actually decrease as tonicity increased, revealing that the tubular system in intact fibres cannot be compressed below 0.9% of the isotonic fibre volume. The results can be explained in terms of forces acting at the level of the tubular wall. These observations have important physiological implications showing that the tubular system is a dynamic membrane structure capable of changing its volume in response to the membrane potential, cholesterol depletion and osmotic stress but not when the sarcomere length is changed in resting muscle.
Resumo:
Little is known of the neural mechanisms of marsupial olfaction. However, functional magnetic resonance imaging (fMRI) has made it possible to visualize dynamic brain function in mammals without invasion. In this study, central processing of urinary pheromones was investigated in the brown antechinus, Antechinus stuartii, using fMRI. Images were obtained from 18 subjects (11 males, 7 females) in response to conspecific urinary olfactory stimuli. Significant indiscriminate activation occurred in the accessory olfactory bulb, entorhinal, frontal, and parietal cortices in response to both male and female urine. The paraventricular nucleus of hypothalamus, ventrolateral thalamic nucleus, and medial preoptic area were only activated in response to male urine. Results of this MRI study indicate that projections of accessory olfactory system are activated by chemo-sensory cues. Furthermore, it appears that, based on these experiments, urinary pheromones may act on the hypothalamo-pituitary-adrenocortical axis via the paraventricular nucleus of the hypothalamus and may play an important role in the unique life history pattern of A. stuartii. Finally, this study has demonstrated that fMRI may be a powerful tool for investigations of olfactory processes in mammals.
Resumo:
A new method for the evaluation of radiotherapy 3D polymer gel dosimeters has been developed using ultrasound to assess the significant structural changes that occur following irradiation of the dosimeters. The ultrasonic parameters of acoustic speed of propagation, attenuation and transmitted signal intensity were measured as a function of absorbed radiation dose. The dose sensitivities for each parameter were determined as 1.8 x 10(-4) s m(-1) Gy(-1), 3.9 dB m(-1) Gy(-1) and 3.2 V-1 Gy(-1) respectively. All parameters displayed a strong variation with absorbed dose that continued beyond absorbed doses of 15 Gy. The ultrasonic measurements demonstrated a significantly larger dynamic range in dose response curves than that achieved with previously published magnetic resonance imaging (MRI) dose response data. It is concluded that ultrasound shows great potential as a technique for the evaluation of polymer gel dosimeters.
Resumo:
Off-resonance RF pre-saturation was used to obtain contrast in MRI images of polymer gel dosimeters irradiated to doses up to 50 Gy. Two different polymer gel dosimeters composed of 2-hydroxyethyl-acryl ate or methacrylic acid monomers mixed with N, N'-methylene-bisacrylamide (BIS), dispersed in an aqueous gelatin matrix were evaluated. Radiation-induced polymerization of the co-monomers generates a fast-relaxing insoluble polymer. Saturation of the polymer using off-resonance Gaussian RF pulses prior to a spin-echo read-out with a short echo time leads to contrast that is dependent on the absorbed dose. This contrast is attributed to magnetization transfer (MT) between free water and the polymer, and direct saturation of water was found to be negligible under the prevailing experimental conditions. The usefulness of MT imaging was assessed by computing the dose resolution obtained with this technique. We found a low value of dose resolution over a wide range of doses could be obtained with a single experiment. This is an advantage over multiple spin echo (MSE) experiments using a single echo spacing where an optimal dose resolution is achieved over only very limited ranges of doses. The results suggest MT imaging protocols may be developed into a useful tool for polymer gel dosimetry.
Resumo:
The progressive changes in the water distribution within rabbit muscles were studied by nuclear magnetic resonance microscopy during the first 24 h postmortem. T-2 images revealed development of interspersed lines with higher signal intensities in the muscle, reflecting formation of channels containing mobile water. The appearance of the interspersed lines progressed throughout the measuring period and became increasingly evident. After about 3 h postmortem the signal intensity also increased in areas near the surface of the samples, which reflects migration of the mobile water to the sample surface. Proton density images showed the presence of a chemical shift artifact in the interspersed lines, implying that the intrinsic development of water channels progressed in close proximity to the connective tissue. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To determine the cost effectiveness of a magnetic resonance imaging scan (MRI) within 5 days of injury compared with the usual management of occult scaphoid fracture. Methods: All patients with suspected scaphoid fractures in five hospitals were invited to participate in a randomised controlled trial of usual treatment with or without an MRI scan. Healthcare costs were compared, and a cost effectiveness analysis of the use of MRI in this scenario was performed. Results: Twenty eight of the 37 patients identified were randomised: 17 in the control group, 11 in the MRI group. The groups were similar at baseline and follow up in terms of number of scaphoid fractures, other injuries, pain, and function. Of the patients without fracture, the MRI group had significantly fewer days immobilised: a median of 3.0 (interquartile range 3.0-3.0) v 10.0 (7-12) in the control group (p = 0.006). The MRI group used fewer healthcare units (median 3.0, interquartile range 2.0-4.25) than the control group (5.0, 3.0-6.5) (p = 0.03 for the difference). However, the median cost of health care in the MRI group ($594.35 AUD, $551.35-667.23) was slightly higher than in the control group ($428.15, $124.40-702.65) (p = 0.19 for the difference). The mean incremental cost effectiveness ratio derived from this simulation was that MRI costs $44.37 per day saved from unnecessary immobilisation (95% confidence interval $4.29 to $101.02). An illustrative willingness to pay was calculated using a combination of the trials measure of the subjects' individual productivity losses and the average daily earnings. Conclusions: Use of MRI in the management of occult scaphoid fracture reduces the number of days of unnecessary immobilisation and use of healthcare units. Healthcare costs increased non-significantly in relation to the use of MRI in this setting. However, when productivity losses are considered, MRI may be considered cost effective, depending on the individual case.
Resumo:
N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.
Resumo:
A functional magnetic resonance imaging mental rotation paradigm was used to investigate the patterns of activation of fronto-parietal brain areas in male adolescents with attention-deficit hyperactivity disorder, combined type (ADHD-CT) compared with age-, gender-, handedness- and performance IQ-matched healthy controls. The ADHD-CT group had (a) decreased activation of the 'action-attentional' system (including Brodmann's areas (BA) 46, 39,40) and the superior parietal (BA7) and middle frontal (BA10) areas and (b) increased activation of the posterior midline attentional system. These different neuroactivation patterns indicate widespread frontal, striatal and parietal dysfunction in adolescents with ADHD-CT. Declaration of interest None.
Resumo:
Oral squamous cell carcinoma (OSCC) is associated with high morbidity and mortality which is due, at least in part, to late detection. Precancerous and cancerous oral lesions may mimic any number of benign oral lesions, and as such may be left without investigation and treatment until they are well advanced. Over the past several years there has been renewed interest in oral cytology as an adjuvant clinical tool in the investigation of oral mucosal lesions. The purpose of the present study was to compare the usefulness of ploidy analysis after Feulgen stained cytological thin-prep specimens with traditional incisional biopsy and routine histopathological examination for the assessment of the pre-malignant potential of oral mucosal lesions. An analysis of the cytological specimens was undertaken with virtual microscopy which allowed for rapid and thorough analysis of the complete cytological specimen. 100 healthy individuals between 30 and 70 years of age, who were non-smokers, non-drinkers and not taking any medication, had cytological specimens collected from both the buccal mucosa and lateral margin of tongue to establish normal cytology parameters within a control population. Patients with a presumptive clinical diagnosis of lichen planus, leukoplakia or OSCC had lesional cytological samples taken prior to their diagnostic biopsy. Standardised thin preparations were prepared and each specimen stained by both Feuglen and Papanicolau methods. High speed scanning of the complete slide at 40X magnification was undertaken using the Aperio Scanscope TM and the green channel of the resultant image was analysed after threshold segmentation to isolate only nuclei and the integrated optical density of each nucleus taken as a gross measure of the DNA content (ploidy). Preliminary results reveal that ploidy assessment of oral cytology holds great promise as an adjunctive prognostic factor in the analysis of the malignant potential of oral mucosal lesions.