68 resultados para REHABILITATION OF STRUCTURES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Choice of the operational frequency is one of the most responsible parts of any radar design process. Parameters of radars for buried object detection (BOD) are very sensitive to both carrier frequency and ranging signal bandwidth. Such radars have a specific propagation environment with a strong frequency-dependent attenuation and, as a result, short operational range. This fact dictates some features of the radar's parameters: wideband signal-to provide a high range resolution (fractions of a meter) and a low carrier frequency (tens or hundreds megahertz) for deeper penetration. The requirement to have a wideband ranging signal and low carrier frequency are partly in contradiction. As a result, low-frequency (LF) ultrawide-band (UWB) signals are used. The major goal of this paper is to examine the influence of the frequency band choice on the radar performance and develop relevant methodologies for BOD radar design and optimization. In this article, high-efficient continuous wave (CW) signals with most advanced stepped frequency (SF) modulation are considered; however, the main conclusions can be applied to any kind of ranging signals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We hypothesized that the four rotation crops: wheat (Triticum aestivum L.), sorghum [Sorghum bicolor (L.) Merr.], lablab [Lablab purpureus (L.) Sweet] and mung bean [ Vigna radiata (L.) R. Wilczek] differ in their ability to repair soil structure. The study was conducted on a Typic Haplustert, Queensland, Australia, locally termed a Black Earth and considered a prime cropping soil. Large (0.5-m depth by 0.3-m diam.) soil cores, collected from compacted wheel furrows in an irrigated cotton (Gossypium hirsutum L.) field, were subjected to three, six, or nine wet-dry cycles that simulated local flood irrigation practices. After each cycle, soil profiles were sampled for clod bulk density, image analysis of soil structure, and evapotranspiration. Generally, all crops improved soil structure over the initial field condition but lablab and mung bean gave improvements to greater depths and more rapidly than wheat and sorghum. Mung bean and lablab caused up to a threefold increase in clod porosity in the 0.1- to 0.4-m soil layer after only three wet-dry cycles, whereas sorghum required nine wet-dry cycles to increase clod porosity in only the 0.2- to 0.3-m layer, and wheat gave no improvement even after nine wet-dry cycles. Image analysis of soil structure showed that lablab and mung bean rapidly (by three wet-dry cycles) produced smaller peds with more interconnected pore space than wheat and sorghum. By nine wet-dry cycles, sorghum achieved deep cracking of the soil but the material between the cracks remained large and dense. Evapotranspiration was double under lablab and mung bean compared with wheat and sorghum. Our results indicate greater cycles of wetting and drying under lablab and mung bean than wheat and sorghum that have led to rapid repair of soil compaction.