44 resultados para Q switched lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a proof of principle demonstration of an optically driven micromachine element. Optical angular momentum is transferred from a circularly polarized laser beam to a birefringent particle confined in an optical tweezers trap. The optical torque causes the particle to spin at up to 350 Hz, and this torque is harnessed to drive an optically trapped microfabricated structure. We describe a photolithographic method for producing the microstructures and show how a light driven motor could be used in a micromachine system. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the design and development of a dividing/phasing network for a compact switched-beam array antenna for Land-vehicle mobile satellite communications, The device is formed by a switched radial divider/combiner and 1-bit phase shifters and generates a sufficient number of beams for the proper satellite tracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a reply to the comment by P Schlottmann and A A Zvyagin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of rho(ss) as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy chi of the bosons in the laser mode, and the excess phase noise nu. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (nu=chi=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through nu or the self-interaction of the bosons chi, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular, for which phase dispersion due to self-interactions is expected to be large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laser, be it an optical laser or an atom laser, is an open quantum system that produces a coherent beam of bosons (photons or atoms, respectively). Far above threshold, the stationary state rho(ss) of the laser mode is a mixture of coherent-field states with random phase, or, equivalently, a Poissonian mixture of number states. This paper answers the question: can descriptions such as these, of rho(ss) as a stationary ensemble of pure states, be physically realized? Here physical realization is as defined previously by us [H. M. Wiseman and J. A. Vaccaro, Phys. Lett. A 250, 241 (1998)]: an ensemble of pure states for a particular system can be physically realized if, without changing the dynamics of the system, an experimenter can (in principle) know at any time that the system is in one of the pure-state members of the ensemble. Such knowledge can be obtained by monitoring the baths to which the system is coupled, provided that coupling is describable by a Markovian master equation. Using a family of master equations for the (atom) laser, we solve for the physically realizable (PR) ensembles. We find that for any finite self-energy chi of the bosons in the laser mode, the coherent-state ensemble is not PR; the closest one can come to it is an ensemble of squeezed states. This is particularly relevant for atom lasers, where the self-energy arising from elastic collisions is expected to be large. By contrast, the number-state ensemble is always PR. As the self-energy chi increases, the states in the PR ensemble closest to the coherent-state ensemble become increasingly squeezed. Nevertheless, there are values of chi for which states with well-defined coherent amplitudes are PR, even though the atom laser is not coherent (in the sense of having a Bose-degenerate output). We discuss the physical significance of this anomaly in terms of conditional coherence (and hence conditional Bose degeneracy).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We detail the automatic construction of R matrices corresponding to (the tensor products of) the (O-m\alpha(n)) families of highest-weight representations of the quantum superalgebras Uq[gl(m\n)]. These representations are irreducible, contain a free complex parameter a, and are 2(mn)-dimensional. Our R matrices are actually (sparse) rank 4 tensors, containing a total of 2(4mn) components, each of which is in general an algebraic expression in the two complex variables q and a. Although the constructions are straightforward, we describe them in full here, to fill a perceived gap in the literature. As the algorithms are generally impracticable for manual calculation, we have implemented the entire process in MATHEMATICA; illustrating our results with U-q [gl(3\1)]. (C) 2002 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present and prove in detail a Poincare-Birkhoff-Witt commutator lemma for the quantum superalgebra U-q[gl(m\n)]. (C) 2003 American Institute of Physics.