40 resultados para Probabilistic forecasting
Resumo:
Probabilistic robotics most often applied to the problem of simultaneous localisation and mapping (SLAM), requires measures of uncertainty to accompany observations of the environment. This paper describes how uncertainty can be characterised for a vision system that locates coloured landmarks in a typical laboratory environment. The paper describes a model of the uncertainty in segmentation, the internal cameral model and the mounting of the camera on the robot. It explains the implementation of the system on a laboratory robot, and provides experimental results that show the coherence of the uncertainty model.
Resumo:
In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.