62 resultados para Prenatal Exposure Delayed Effects
Resumo:
Sodium cyanide is being used on reefs in the Asia-Pacific region to capture live fish for the aquarium industry, and to supply a rapidly growing, restaurant-based demand, The effects of cyanide on reef biota have not been fully explored. To investigate its effect on hard corals, we exposed small branch lips of Stylophora pistillata and Acropora aspera to cyanide concentrations estimated to occur during cyanide fishing. Pulse amplitude modulation (PAM) chlorophyll fluorescence techniques were used to examine photoinhibition and photosynthetic electron transport in the symbiotic algae (zooxanthellae) in the tissues of the corals, These measurements were made in situ and in real time using a recently developed submersible PAM fluorometer. In S. pistillata. exposure to cyanide resulted in an almost complete cessation in photosynthetic electron transport rate. Both species displayed marked decreases in the ratio of variable fluorescence (F-v) to maximal fluorescence (F-m) (dark-adapted F-v/F-m), following exposure to cyanide, signifying a decrease in photochemical efficiency. Dark-adapted F-v/F-m recovered to normal levels in similar to 6 d, although intense tissue discolouration, a phenomenon well-recognised as coral 'bleaching' was observed during this period, Bleaching was caused by loss of zooxanthellae from the coral tissues, a well-recognised sub-lethal stress response of corals. Using the technique of chlorophyll fluorescence quenching analysis, corals exposed to cyanide did not show light activation of Calvin cycle enzymes and developed high levels of non-photochemical quenching (q(N)), signifying the photoprotective dissipation of excess light as heat, These features are symptomatic of the known properties of cyanide as an inhibitor of enzymes of the Calvin cycle. The results of this in situ study show that an impairment of zooxanthellar photosynthesis is; the site of cyanide-mediated toxicity, and is the cue that causes corals to release their symbiotic zooxanthellac following cyanide exposure. This study demonstrates the efficacy of PBM fluorometry as a new tool for in situ stress assessment in zooxanthellate scleractinian corals. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life resulted in a deficit in spatial learning ability. This ability is controlled, at least in part, by the hippocampal formation. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life affected the number of specific neurons in the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol between postnatal days 10 and 15 by placing them for 3 h each day in a chamber containing ethanol vapor. The blood ethanol concentration was about 430 mg/dl at the end of the exposure period. Groups of ethanol-treated (ET) rats, separation controls (SC), and mother-reared controls (MRC) were anesthetized and killed at 16 days of age by perfusion with phosphate-buffered glutaraldehyde (2.5%). The Cavalieri principle was used to determine the volume of various subdivisions of the hippocampal formation (CA1, CA2+CA3, hilus, and granule cell layer), and the physical disector method was used to estimate the numerical densities of neurons within each subdivision. The total number of neurons was calculated by multiplying estimates of the numerical density with the volume. There were, on average, about 441,000 granule cells in the granule cell layer and 153,000 to 177,000 pyramidal cells in both the CA1 and CA2+CA3 regions in all three treatment groups. In the hilus region, ET rats had about 27,000 neuronal cells. This was significantly fewer than the average of 38,000 such neurons estimated to be present in both MRC and SC animals. Thus, neurons in the hilus region may be particularly vulnerable to the effects of a high dose of ethanol exposure during early postnatal life. (C) 2000 Wiley-Liss, Inc.
Resumo:
This study focused on the DNA-binding activity and protein expression of the transcription factors Egr-1 and Egr-3 in the rat brain cortex and hippocampus after chronic or acute ethanol exposure. DNA-binding activity was reduced in both regions after chronic ethanol exposure and was restored to the level of the pair-fed group at 16 h of withdrawal. Cortical Egr-1 protein levels were not altered by chronic ethanol exposure but increased 16 h after withdrawal, thus mirroring DNA-binding activity. In contrast, Egr-3 protein levels did not undergo any change. There was no change in the level of either protein in the hippocampus. Immunohistochemistry revealed a region-selective change in immunopositive cells in the cortex and hippocampus. Finally, an acute bolus dose of ethanol did not affect Egr DNA-binding activity and ethanol treatment did not alter the DNA-binding activity or protein levels of the transcription factor Spl. These observations suggest that chronic exposure to ethanol has region-selective effects on the DNA-binding activity and protein expression of Egr-1 and Egr-3 transcription factors in the rat brain. These changes occur after prolonged ethanol exposure and may thus reflect neuroadaptive changes associated with physical dependency and withdrawal. These effects are also transcription factor-selective. Clearly, protein expression is not the sole mediator of the changes in DNA-binding activity and chronic ethanol exposure must have effects on modulatory agents of Egr DNA-binding activity. (C) 2000 Elsevier Science Ltd, All rights reserved.
Resumo:
It is becoming widely recognized that extending the larval period of marine invertebrates, especially of species with non-feeding larvae, can affect post-larval performance. As these carry-over effects are presumed to be caused by the depletion of larval energy reserves, we predicted that the level of larval activity would also affect post-larval performance. This prediction was tested with the cosmopolitan colonial ascidian Diplosoma listerianum in field experiments in southern Australia. Diplosoma larvae, brooded in the parent colony, are competent to settle immediately after spawning, and they remain competent to metamorphose for > 15 h. Some larvae were induced to metamorphose 0 to 6 h after release, whilst others were induced to swim actively by alternating light and dark periods for up to 3 h prior to metamorphosis. Juvenile colonies were then transplanted to a subtidal field site in Port Phillip Bay and left to grow for up to 3 wk. Extending the larval period and increasing the amount of swimming both produced carry-over effects on post-larval performance. Colonies survived at different rates among experiments, but larval experience did not affect survival rates. Delays in metamorphosis and increased swimming activity did, however, reduce colony growth rates dramatically, resulting in 50% fewer zooids per colony. Moreover, such colonies produced initial zooids with smaller feeding structures, with the width of branchial baskets reduced by 10 to 15%. These differences in branchial basket size persisted and were still apparent in newly budded zooids 3 wk after metamorphosis. Our results suggest that, for D. listerianum, larval maintenance, swimming, and metamorphosis all use energy from a common pool, and increases in the allocation to maintenance or swimming come at the expense of post-larval performance.
Resumo:
Larval quality may be capable of explaining much of the variation in the recruitment and subsequent population dynamics of benthic marine invertebrates. Whilst the effects of larval nutritional condition on adult performance have received the most attention, recent work has shown that larval size may also be an important and ubiquitous source of variation in larval quality. We examined the effects of variation in larval size on the post-metamorphic survival and growth of Watersipora subtorquata in 2 very different habitats - experimental substrata and pier pilings. We found strong effects of larval size on colony performance, although these varied among experiments. For colonies on experimental substrata, larval size positively affected adult survival and, initially, growth. However, after 3 wk in the field, there was no relationship between larval size and colony size, possibly because colonies were completely surrounded by newly settled organisms. Larval size also positively affected post-metamorphic growth of colonies on pier pilings, but, surprisingly, colonies that came from larger larvae had lower survival than colonies from smaller larvae. Overall, variation in larval size will strongly affect the recruitment and subsequent performance of adults in this species, although this may vary among different habitats. This study highlights the importance of examining the effects of larval quality on adult performance in as realistic conditions as possible, because of the strong interaction between larval size effects and the environment.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood and adult-onset schizophrenia, bipolar disorder, attention-deficit/ hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages. (C) 2004 Published by Elsevier Inc.
Resumo:
wPrey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Ethics as a subject is now consistently taught in medical schools within Australia. The theoretical Ethical models used, and the associated clinical discussions, vary between schools. Registrars have further theoretical Ethics teaching within Psychiatry Fellowship Training, and ongoing clinical work that is likely to provide exposure to complex and frequent Ethical dilemmas. As Psychiatry Trainees approach subspecialty training in Child and Adolescent Psychiatry they therefore have a rich experience of both theoretical Ethics teaching and clinical exposure to Ethical issues. In this symposium, the difficulties Child and Adolescent Psychiatry Trainees may have in the integration of multiple theoretical Ethical models are discussed. It is suggested that these difficulties make Ethics Teaching for Child and Adolescent Psychiatry Trainees particularly challenging. This is important given the complex Ethical issues often present when working with Children and their Families. The three main Ethical models of Deontology, Virtue Ethics and Consequentialism are described and their usefulness for the Child and Adolescent Psychiatrist examined. Limitations of these models, and “Four Principles” approaches (such as that of Beauchamp and Childress), for Child and Adolescent Psychiatry, are also considered. Clinical cases are included for discussion. Finally, the ways in which these models may be used to enhance Child and Adolescent Psychiatry Training, and subsequent clinical practice as a Child and Adolescent Psychiatrist, are discussed. The integration of different theoretical Ethical models is considered, with implications identified for clinical practice.
Resumo:
Background: There is growing evidence that vitamin D is active in the brain but until recently there was a lack of evidence about its role during brain development. Guided by certain features of the epidemiology of schizophrenia, we have explored the role of vitamin D in the developing brain and behaviour using whole animal models. Methods: Sprague-Dawley rats were fed a vitamin D deficient diet (DVD) or control diet 6 weeks prior to mating and housed under UVB-free lighting conditions. On the day of birth all rats were fed a control diet for the remainder of the study. We observed behaviour at two timepoints; on the day of birth to study maternal behaviour, and at 10 weeks of age to study offspring behaviour in adulthood, under baseline and drug induced conditions (MK-801, haloperidol, amphetamine). Results: Prenatal vitamin D deficiency results in subtle alterations in maternal behaviour as well as long lasting effects on the adult offspring, despite a return to normal vitamin D levels during postnatal life. These affects were specific to transient prenatal vitamin D depletion as adult vitamin D depletion, combined prenatal and chronic postnatal vitamin D depletion, or ablation of the vitamin D receptor in mice led to markedly different outcomes. Conclusions: The developmental vitamin D (DVD) model now draws strength from epidemiological evidence of schizophrenia and animal experiments. Although the DVD model does not replicate every aspect of schizophrenia, it has several attractive features: (1) the exposure is based on clues from epidemiology; (2) it reproduces the increase in lateral ventricles; (3) it reproduces well-regarded behavioural phenotypes associated with schizophrenia (e.g. MK- 801 induced hyperlocomotion); and (4) it implicates a disturbance in dopamine signaling. In summary, low prenatal levels of vitamin D can influence critical components of orderly brain development and that this has a long lasting effect on behaviour.
Resumo:
Guinea pigs were exposed to pure tones of 10 kHz at intensities between 98 and 115 dB SPL for 5-30 min, to produce varying degrees of acoustic trauma. Changes in auditory thresholds were measured electrophysiologically, and the animals were immediately fixed for scanning electron microscopy. Correlation between morphological changes to the hair bundle and losses in threshold, showed that with the smallest degrees of trauma (98 dB SPL for 15 min, mean maximum threshold loss of 22 dB), damage was confined to a small stretch of inner hair cells (IHC), with only subtle changes to the stereocilia of the outer hair cells (OHC). At exposure intensities greater than 102 dB SPL (duration: 15 min) the IHC stereocilia in the centre of the lesion were always substantially disarrayed. Substantial damage to the OHC bundles was seen only with exposures above 110 dB SPL(duration: greater than or equal to 5 min), producing threshold losses of 50 dB or more. Tip links were lost only where the stereocilia were disarrayed. It is concluded that the tip links are not the most vulnerable components of the cochlear hair cell, but that relatively low levels of acoustic stimulation can cause significant damage to the stereociliary bundle of the IHCs.
Resumo:
Background. A sample of 1089 Australian adults was selected for the longitudinal component of the Quake Impact Study, a 2-year, four-phase investigation of the psychosocial effects of the 1989 Newcastle earthquake. Of these, 845 (78%) completed a survey 6 months post-disaster as well as one or more of the three follow-up surveys. Methods. The phase I survey was used to construct dimensional indices of self-reported exposure to threat the disruption and also to classify subjects by their membership of five 'at risk' groups (the injured; the displaced; owners of damaged small businesses; helpers in threat and non-threat situations). Psychological morbidity was assessed at each phase using the 12-item General Health Questionnaire (GHQ-12) and the Impact of Event Scale (IES). Results. Psychological morbidity declined over time but tended to stabilize at about 12 months post-disaster for general morbidity (GHQ-12) and at about 18 months for trauma-related (IES) morbidity. Initial exposure to threat and/or disruption were significant predictors of psychological morbidity throughout the study and had superior predictive power to membership of the targeted 'at risk' groups. The degree of ongoing disruption and other life events since the earthquake were also significant predictors of morbidity. The injured reported the highest levels of distress, but there was a relative absence of morbidity among the helpers. Conclusions. Future disaster research should carefully assess the threat and disruption experiences of the survivors at the time of the event and monitor ongoing disruptions in the aftermath in order to target interventions more effectively.
Resumo:
Social surveys have established dose-response relationships between aircraft noise and annoyance, with a number of psychological symptoms being positively related to annoyance. Evidence that exposure to aircraft noise is associated with higher psychiatric hospital admission rates is mixed. Some evidence exists of an association between aircraft noise exposure and use of psychotropic medications. People with a pre-existing psychological or psychiatric condition may be more susceptible to the effects of exposure to aircraft noise. Aircraft noise can produce effects on electroencephalogram sleep patterns and cause wakefulness and difficulty in sleeping. Attendances at general practitioners, self-reported health problems and use of medications, have been associated with exposure to aircraft noise, but some findings are inconsistent. Some association between aircraft noise exposure and elevated mean blood pressure has been observed in cross-sectional studies of schoolchildren, but with little confirmation from cohort studies. There is no convincing evidence to suggest that all-cause or cause-specific mortality is increased by exposure to aircraft noise. There is no strong evidence that aircraft noise has significant perinatal effects. Using the World Health Organization definition of health, which includes positive mental and social wellbeing, aircraft noise is responsible for considerable ill-health. However, population-based studies have not found strong evidence that people living near or under aircraft flight paths suffer higher rates of clinical morbidity or mortality as a consequence of exposure to aircraft noise. A dearth of high quality studies in this area precludes drawing substantive conclusions.
Resumo:
To date, the published controlled trials on exposure to alcohol cues have had an abstinence treatment goal. A modification of cue exposure (CE) for moderation drinking, which incorporated priming doses of alcohol, could train participants to stop drinking after 2 to 3 drinks. This study examined the effects of modified CE within sessions, combined with directed homework practice. Nondependent problem drinkers who requested a moderation drinking goal were randomly allocated to modified CE or standard cognitive-behavior therapy (CBT) for alcohol abuse. Both interventions were delivered in 6 90-min group sessions. Eighty-one percent of eligible participants completed treatment and follow-up assessment. Over 6 months, CE produced significantly greater reductions than CBT in participants' reports of drinking frequency and consumption on each occasion. No pretreatment variables significantly predicted outcome, The modified CE procedure appears viable for nondependent drinkers who want to adopt a moderate drinking goal.
Resumo:
Rats exposed to a relatively high dose (7.5 g/kg body weight) of alcohol on either the fifth or tenth postnatal day of age have been reported to have long-lasting deficits in spatial learning ability as tested on the Morris water maze task. The question arises concerning the level of alcohol required to achieve this effect. Wistar rats were exposed to either 2, 4 or 6 g/kg body weight of ethanol administered as a 10% solution. This ethanol was given over an 8-h period on the fifth postnatal day of age by means of an intragastric cannula. Gastrostomy controls received a 5% sucrose solution substituted isocalorically for the ethanol. Another set of pups raised by their mother were used as suckle controls. All surgical procedures were carried out under halothane vapour anaesthesia. After the artificial feeding regimes all pups were returned to lactating dams and weaned at 21 days of age. The spatial learning ability of these rats was tested in the Morris water maze when they were between 61-64 days of age. This task requires the rats to swim in a pool containing water made opaque and locate and climb onto a submerged platform. The time taken to accomplish this is known as the escape latency. Each rat was subjected to 24 trials over 3 days of the test period. Statistical analysis of the escape latency data revealed that the rats given 6 g/kg body weight of ethanol had significant deficits in their spatial learning ability compared with their control groups. However, there was no significant difference in spatial learning ability for the rats given either 2 or 4 g/kg body weight of ethanol compared with their respective gastrostomy or suckle control animals. We concluded that ethanol exposure greater than 4 g/kg over an 8-h period to 5-day-old rats is required for them to develop long-term deficits in spatial learning behaviour. (C) 1998 Elsevier Science Inc.
Resumo:
Marine sponges often harbour communities of symbiotic microorganisms that fulfil necessary functions for the well-being of their hosts. Microbial communities associated with the sponge Rhopaloeides odorabile were used as bioindicators far sublethal cupric ion (Cu2+) stress. A combined strategy incorporating molecular, cultivation and electron microscopy techniques was adopted to monitor changes in microbial diversity. The total density of sponge-associated bacteria and counts of the predominant cultivated symbiont (alpha -proteobacterium strain NW001) were significantly reduced in response to Cu2+ concentrations of 1.7 mug l(-1) and above after 14 days of exposure. The number of operational taxonomic units (OTUs) detected by restriction fragment length polymorphism (RFLP) decreased by 64% in sponges exposed to 223 mug l(-1) Cu2+ for 48 h and by 46% in sponges exposed to 19.4 mug l(-1) Cu2+ for 14 days. Electron microscopy was used to identify 17 predominant bacterial morphotypes, composing 47% of the total observed cells in control sponges. A reduction In the proportion of these morphotypes to 25% of observed cells was evident in sponges exposed to a Cu2+ concentration of 19.4 mug l(-1). Although the abundance of most morphotypes decreased under Cu2+ stress, three morphotypes were not reduced in numbers and a single morphotype actually increased in abundance. Bacterial numbers, as detected using fluorescence in situ hybridization (FISH), decreased significantly after 48 h exposure to 19.4 mug l(-1) Cu2+. Archaea, which are normally prolific in R. odorabile, were not detected after exposure to a Cu2+ concentration of 19.4 mug l(-1) for 14 days, indicating that many of the microorganisms associated with R. odorabile are sensitive to free copper. Sponges exposed to a Cu2+ concentration of 223 mug l(-1) became highly necrosed after 48 h and accumulated 142 +/- 18 mg kg(-1) copper, whereas sponges exposed to 19.4 mug l(-1) Cu2+ accumulated 306 +/- 15 mg kg(-1) copper after 14 days without apoptosis or mortality. Not only do sponges have potential for monitoring elevated concentrations of heavy metals but also examining changes in their microbial symbionts is a novel and sensitive bioindicator for the assessment of pollution on important microbial communities.