46 resultados para Plates ninety five
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a numerical study of fluidized-bed coating on thin plates using an orthogonal collocation technique. Inclusion of the latent heat of fusion term in the boundary conditions of the mathematical model accounts for the fact that some polymer powders used in coating may be partially crystalline. Predictions of coating thickness on flat plates were made with actual polymers used in fluidized-bed coating. Reasonably good agreement between numerical predictions of the coating thickness and experimental coating data of Richart was obtained for steel panels preheated to 316 degreesC. A good agreement was also obtained between numerical predictions and our coating thickness data for nylon-11 and polyethylene powders. Predicted coating thickness for polyethylene powder on flat plates were obtained with values of heat transfer coefficient closer to those obtained from our experiments. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Sperm ultrastructure is examined in representatives of five genera of the nudibranch gastropod family Chromodorididae: (Chromodoris, Hypselodoris, Glossodoris, Risbecia and Pectenodoris) and the results compared with previous work on other gastropods, especially other nudibranchs. As chromodoridid phylogeny is still incompletely understood, this study partly focuses on the search for new and as yet untapped sources of informative characters. Like spermatozoa of most other heterobranch gastropods, those of the Chromodorididae are elongate, complex cells composed of an acrosomal complex (small, rounded acrosomal vesicle, and columnar acrosomal pedestal), a condensed nucleus, sub-nuclear ring, a highly modified mid-piece (axoneme + coarse fibres surrounded by a glycogen-containing, helically-coiled mitochondrial derivative) and terminally a glycogen piece (or homologue thereof). The finely striated acrosomal pedestal is a synapomorphy of all genera examined here, but interestingly also occurs in at least one dorid (Rostanga arbutus). Substantial and potentially taxonomically informative differences were also observed between genera in the morphology of the nucleus, the neck region of the mid-piece, and also the terminal glycogen piece. The subnuclear ring is shown for the first time to be a segmented, rather than a continuous structure; similarly, the annular complex is shown to consist of two structures, the annulus proper and the herein-termed annular accessory body.
Resumo:
The seasonal incidence of pollen in the atmosphere of Brisbane has been established from a near continuous. volumetric trapping program over the five-year period, July 1994-June 1999. Grass pollen accounts for 71.6% of the average annual pollen load with highest densities (up to 150 grains/m(3)) recorded in summer and autumn. Significant contributions were also made by taxa of the Cupressaceae (8.7%) and Urticaceae (1.8%) during spring and of the Pinaceae (4.5%) during winter. Pollen seasons of the Casuarinaceae (6.5%) and Myrtaceae (3.2%) are more extended, the former peaking in late winter and the latter in late spring. The onset and duration of the Poaceae and Urticaceae seasons varied from year to year, being later when precipitation levels were low in the late spring-early summer months. Total pollen numbers and grass pollen densities are substantially less than those recorded from southern Australia. Nevertheless, respiratory disease in Brisbane affects up to 10% of the population, and airborne pollen of Poaceae, Urticaceae, Cupressaceae, Pinaceae, and Myrtaceae have been implicated in the release of allergens.
Resumo:
We investigated the burst swimming performance of five species of Antarctic fish at -1.0degreesC. The species studied belonged to the suborder, Notothenioidei, and from the families, Nototheniidae and Bathydraconidae. Swimming performance of the fish was assessed over the initial 300 ms of a startle response using surgically attached miniature accelerometers. Escape responses in all fish consisted of a C-type fast start; consisting of an initial pronounced bending of the body into a C-shape, followed by one or more complete tail-beats and an un-powered glide. We found significant differences in the swimming performance of the five species of fish examined, with average maximum swimming velocities (U-max) ranging from 0.91 to 1.39 m s(-1) and maximum accelerations (A(max)) ranging from 10.6 to 15.6 m s(-2). The cryopelagic species, Pagothenia borchgrevinki, produced the fastest escape response, reaching a U-max and A(max) of 1.39 m s(-1) and 15.6 m s(-2), respectively. We also compared the body shapes of each fish species with their measures of maximum burst performance. The dragonfish, Gymnodraco acuticeps, from the family Bathdraconidae, did not conform to the pattern observed for the other four fish species belonging to the family Nototheniidae. However, we found a negative relationship between buoyancy of the fish species and burst swimming performance. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Many lungfish of the tooth plated lineage, both fossil and living, are affected by dental and skeletal pathologies including dental caries, abscesses and cysts within the bone or tooth plate, osteopenia, bone hypertrophy, and malocclusion. These conditions, while influenced in part by structural relationships of soft and hard tissues in the tooth plates, jaw bones and surrounding oral tissues, can also be used as indicators of the kind of environment inhabited by the fish. The disease processes have specific structural consequences, related either to the pathology or to attempts to heal the damage, and usually alter the form and function of the tooth plate or bone. Consequently they can be distinguished from postmortem diagenetic or taphonomic effects, which alter the structure in less specific ways and show no sign of healing. Dental caries, the most common pathological condition in dipnoan dentitions, is recognisable in lungfish from the Devonian of Western Australia, the Tertiary of South Australia and the Northern Territory and from living lungfish in south east Queensland. Other pathologies have a more sporadic occurrence.
Resumo:
Objective: To compare head relocation accuracy in traumatic ( whiplash), insidious onset neck pain patients and asymptomatic subjects when targeting a natural head posture (NHP) and complex predetermined positions. Design: A case-control study. Setting: University-based musculoskeletal research clinic. Participants: Sixty-three volunteers divided into three groups of similar gender and age: Group 1 (n=21) an asymptomatic group; group 2 (n=20) insidious onset neck pain; group 3 (n=22) a history of whiplash injury. Intervention: Five randomly ordered tests designed to detect relocation accuracy of the head. Outcome measures: A 3-Space Fastrak system measured the mean absolute relocation error of three trials of each relocation test. Results: A significant difference was found between groups in one of the tests targeting the NHP (p=0.001). Post-hoc pairwise comparisons revealed a significant difference (pless than or equal to0.05) between the asymptomatic group and each symptomatic group. The difference between the symptomatic groups just failed to reach significance (p=0.07). None of the other four tests revealed significant differences. Conclusion: The test of targeting the NHP indicates that relocation inaccuracy exists in patients with neck pain with a trend to suggest that the deficit may be greater in whiplash patients. Tests employing unfamiliar postures or more complex movement were not successful in differentiating subject groups.
Resumo:
Nine species of Stephanostomum are described from Australian and Southern Pacific marine fishes: Stephanostomum madhaviae n. sp. [syn. S. orientalis of Madhavi ( 1976)] from Caranx ignobilis, off Hope Island, Queensland, with 30-34 circum-oral spines and vitelline fields almost reaching to the posterior extremity of the cirrus-sac; S. bicoronatum (Stossich, 1883) from Argyrosomus hololepidotus, off Southport Broadwater, Queensland; S. votonimoli n. sp. from Scomberoides lysan, off Moorea, French Polynesia ( type-locality) and Western Samoa, with 33-38 circum-oral spines, a uroproct and the vitelline fields not reaching the cirrus-sac; S. nyoomwa n. sp. from Caranx sexfasciatus, off Heron Island, Queensland, with 33-38 circum-oral spines, a uroproct and the vitelline fields reaching the cirrus-sac; S. cobia n. sp. from Rachycentron canadum, off Heron Island, with 36 circum-oral spines, a uroproct and the vitelline fields reaching the cirrus-sac; S. petimba Yamaguti, 1970 from Seriola hippos, off Rottnest Island, Western Australia; S. pacificum ( Yamaguti, 1951) from Pseudocaranx wrighti, off Fremantle, Western Australia; S. aaravi n. sp. from Lethrinus miniatus, off Heron Island, with 36-39 circumoral spines, probably a uroproct and the vitelline fields reaching the ventral sucker; S. pagrosomi ( Yamaguti, 1939) from L. nebulosus, L. miniatus and L. atkinsoni off Heron Island, Pagrus auratus, off Rottnest Island, Western Australia and Gymnocranius audleyi, off Heron Island. A digest of described species of Stephanostomum is included as an appendix.
Resumo:
While the lungfish dentition is partially understood as far as morphology and light microscopic structure is concerned, the ultrastructure is not. Each tooth plate is associated with a dental lamina that develops from the inner layer of endodermal cells that form the oral epithelium. Dentines, bone and cartilage of the jaws differentiate from mesenchyme cells aggregating beneath the oral endothelium. Enamel, in the developing and in the mature form, has similarities to that of other early vertebrates, but unusual characters appear as development proceeds. Ameloblasts are capable of secreting enamel, and, with mononuclear osteoclasts, of remodelling the bone below the tooth plate. The forms of dentine, all based largely on an extracellular matrix of collagen and mineralised with biological apatite, differ from each other and from the underlying bone in the ultrastructure of associated cells and in the mineralised extracellular matrices produced. Cell processes emerging from the odontoblasts and from the osteoblasts vary in length, degree of branching and of anastomoses between the processes, although all of the cell types have large amounts of rough endoplasmic reticulum. Mineralisation of the extracellular matrices varies among the enamel, dentines and bone in the tooth plate. In addition, the development of the hard tissues of the tooth plates indicates that many of the similarities in fine structure of the dentition in lungfish, to tissues in other fish and amphibia, apparent early in development, disappear as the dentition matures. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Lungfish of the tooth-plated lineage, both fossil and living, may be affected by alterations in the permanent tooth plates and associated jaw bones as they grow. In a few taxa, the unusual structures may be so common that they must be considered as normal for those species, or as a variation of the normal condition. In others the condition is rare, affecting only a few individuals. Variations, or anomalies, may appear in the growing tissues of the lungfish tooth plate at any time in the life cycle, although they usually appear early in development. Once the changes appear, they persist in the dentition. The altered structures include divided or intercalated ridges, short ridge anomaly, changes in the shape, number and position of cusps, pattern loss, and fused ridges or cusps. Criteria used to distinguish alteration from normal conditions are the incidence of the character in the population, the associated changes in the jaw bone, and the position of the altered structure in the tooth plate. The occurrence of similar changes across a wide range of different species suggests that they may have a genetic cause, especially when they are a rare occurrence in most taxa, but common enough to be a part of the normal variation in others. Prevalence of related anomalies throughout the history of the group suggests that dipnoans of the tooth-plated lineage are closely related, despite significant differences in morphology, microstructure, and function of the denfitions.
Resumo:
This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Based on the refined non-conforming element method for geometric nonlinear analysis, a refined nonlinear non-conforming triangular plate element is constructed using the Total Lagrangian (T.L.) and the Updated Lagrangian (U.L.) approach. The refined nonlinear non-conforming triangular plate element is based on the Allman's triangular plane element with drilling degrees of freedom [1] and the refined non-conforming triangular plate element RT9 [2]. The element is used to analyze the geometric nonlinear behavior of plates and the numerical examples show that the refined non-conforming triangular plate element by the T.L. and U.L. approach can give satisfactory results. The computed results obtained from the T.L. and U.L. approach for the same numerical examples are somewhat different and the reasons for the difference of the computed results are given in detail in this paper. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.