161 resultados para Plant-pollinator Interactions
Resumo:
In Pisum sativium, the RAMOSUS genes RMS1, RMS2, and RMS5 regulate shoot branching via physiologically defined mobile signals. RMS1 is most likely a carotenoid cleavage enzyme and acts with RMS5 to control levels of an as yet unidentified mobile branching inhibitor required for auxin inhibition of branching. Our work provides molecular, genetic, and physiological evidence that RMS1 plays a central role in a shoot-to-root-to-shoot feedback system that regulates shoot branching in pea. Indole-3-acetic acid (IAA) positively regulates RMS1 transcript level, a potentially important mechanism for regulation of shoot branching by IAA. In addition, RMS1 transcript levels are dramatically elevated in rms3, rms4, and rms5 plants, which do not contain elevated IAA levels. This degree of upregulation of RMS1 expression cannot be achieved in wild-type plants by exogenous IAA application. Grafting studies indicate that an IAA-independent mobile feedback signal contributes to the elevated RMS1 transcript levels in rms4 plants. Therefore, the long-distance signaling network controlling branching in pea involves IAA, the RMS1 inhibitor, and an IAA-independent feedback signal. Consistent with physiological studies that predict an interaction between RMS2 and RMS1, rms2 mutations appear to disrupt this IAA-independent regulation of RMS1 expression.
Resumo:
In this study we have demonstrated the interactions of kalata B1 and its naturally occurring analogue kalata B6 with five model lipid membranes and have analyzed the binding kinetics using surface plasmon resonance. Two kalata peptides showed a higher affinity for the phosphatidylethanolamine-containing membranes, indicating that the peptides would bind selectively to bacterial membranes. Also we have optimized the procedure for the immobilization of five liposome mixtures and have shown that the procedure provides reproducible levels of immobilized liposomes and could be used to screen the selective binding of putative antimicrobial peptides to model mammalian or microbial phospholipid membranes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A cellulose/xyloglucan framework is considered to form the basis for the mechanical properties of primary plant cell walls and hence to have a major influence on the biomechanical properties of growing, fleshy plant tissues. In this study, structural variants of xyloglucan have been investigated as components of composites with bacterial cellulose as a simplified model for the cellulose/xyloglucan framework of primary plant cell walls. Evidence for molecular binding to cellulose with perturbation of cellulose crystallinity was found for all xyloglucan types. High molecular mass samples gave homogeneous centimeter-scale composites with extensive cross-linking of cellulose with xyloglucan. Lower molecular mass xyloglucans gave heterogeneous composites having a range of microscopic structures with little, if any, cross-linking. Xyloglucans with reduced levels of galactose substitution had evidence of self-association, competitive with cellulose binding. At comparable molecular mass, fucose substitution resulted in a modest promotion of microscopic features characteristic of primary cell walls. Taken together, the data are evidence that galactose substitution of the xyloglucan core structure is a major determinant of cellulose composite formation and properties, with additional fucose substitution acting as a secondary modulator. These conclusions are consistent with reported structural and mechanical properties of Arabidopsis mutants lacking specific facose and/or galactose residues.
Resumo:
Computer modelling promises to. be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The 'spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/- 50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations. (c) 2006 Published by Elsevier B.V.
Resumo:
Seven years of multi-environment yield trials of navy bean (Phaseolus vulgaris L.) grown in Queensland were examined. As is common with plant breeding evaluation trials, test entries and locations varied between years. Grain yield data were analysed for each year using cluster and ordination analyses (pattern analyses). These methods facilitate descriptions of genotype performance across environments and the discrimination among genotypes provided by the environments. The observed trends for genotypic yield performance across environments were partly consistent with agronomic and disease reactions at specific environments and also partly explainable by breeding and selection history. In some cases, similarities in discrimination among environments were related to geographic proximity, in others management practices, and in others similarities occurred between geographically widely separated environments which differed in management practices. One location was identified as having atypical line discrimination. The analysis indicated that the number of test locations was below requirements for adequate representation of line x environment interaction. The pattern analyses methods used were an effective aid in describing the patterns in data for each year and illustrated the variations in adaptive patterns from year to year. The study has implications for assessing the number and location of test sites for plant breeding multi-environment trials, and for the understanding of genetic traits contributing to line x environment interactions.
Resumo:
Plant cells are characterized by low water content, so the fraction of cell volume (volume fraction) in a vessel is large compared with other cell systems, even if the cell concentrations are the same. Therefore, concentration of plant cells should preferably be expressed by the liquid volume basis rather than by the total vessel volume basis. In this paper, a new model is proposed to analyze behavior of a plant cell culture by dividing the cell suspension into the biotic- and abiotic-phases, Using this model, we analyzed the cell-growth and the alkaloid production by Catharanthus roseus, Large errors in the simulated results were observed if the phase-segregation was not considered.
Resumo:
Nitrogen relations of natural and disturbed tropical plant communities in northern Australia (Kakadu National Park) were studied. Plant and soil N characteristics suggested that differences in N source utilisation occur at community and species level. Leaf and xylem sap N concentrations of plants in different communities were correlated with the availability of inorganic soil N (NH4+ and NO3-). In general, rates of leaf NO3- assimilation were low. Even in communities with a higher N status, including deciduous monsoon forest, disturbed wetland, and a revegetated mine waste rock dump, levels of leaf nitrate reductase, xylem and leaf NO3 levels were considerably lower than those that have been reported for eutrophic communities. Although NO3- assimilation in escarpment and eucalypt woodlands, and wetland, was generally low, within these communities there was a suite of species that exhibited a greater capacity for NO3- assimilation. These high-NO3- species were mainly annuals, resprouting herbs or deciduous trees that had leaves with high N contents. Ficus, a high-NO3- species, was associated with soil exhibiting higher rates of net mineralisation and net nitrification. Low-NO3- species were evergreen perennials with low leaf N concentrations. A third group of plants, which assimilated NO3- (albeit at lower rates than the high-NO3- species), and had high-N leaves, were leguminous species. Acacia species, common in woodlands, had the highest leaf N contents of all woody species. Acacia species appeared to have the greatest potential to utilise the entire spectrum of available N sources. This versatility in N source utilisation may be important in relation to their high tissue N status and comparatively short life cycle. Differences in N utilisation are discussed in the context of species life strategies and mycorrhizal associations.
Resumo:
Variation of suicide with socio-economic status (SES) in urban NSW (Australia) during 1985-1994, by sex and country or region of birth, was examined using Poisson regression analysis of vital statistics and population data (age greater than or similar to 15 yr). Quintiles of SES were defined by municipality of residence and comparisons of suicide by SES were adjusted for age and country (or region) of birth (COB), and examined by COB. Risk of suicide in females was 28% that of males for all adults and 21% for youth (age 15-24 yr). Suicide risk was lower in males from southern Europe, Middle East and Asia, and higher in northern and eastern European males, compared to the Australian-born. Risks for suicide increased significantly with decreasing SES in males, but not in females. The relationship of male suicide and SES was stronger when controlled for COB. For males, the relative risk of suicide, adjusted for age and COB, was 66% higher in the lowest SES quintile compared to the highest quintile, and 39% higher for youth (age 15-24 yr). For male suicide, the population attributable fraction for SES (less than the highest quintile) was 27%. Analysis of SES differentials in male suicide according to COB indicated a significant inverse suicide gradient in relation to SES for the Australian-born and those burn in New Zealand and the United Kingdom or fire. but not in non-English speaking COB groups, except for Asia. For Australian-born males, suicide risk was 71% higher in the lowest SES group (compared to the highest), adjusted for age. These findings indicate that SES plays an important role in male suicide rates among the Australian-born and migrants from English-speaking countries and Asia, and among youth; but not in female suicide, nor suicide in most non-English speaking migrant groups. Reduction in SES differentials through economic and social policies may reduce male suicide in lower SES groups and should be seen to be at least as important as individual level interventions. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The study investigated the behaviors and interactions of children in structured and unstructured groups as they worked together on a 6-week social studies activity each term for 3 school terms. Two hundred and twelve children in Grade 1 and 184 children in Grade 3 participated in the study. Stratified random assignment occurred so that each gender-balanced group consisted of 1 high-, 2 medium-, and 1 low-ability student. The results show that the children in the structured groups were consistently more cooperative and they provided more elaborated and nonelaborated help than did their peers in the unstructured groups. The children in the structured groups in Grade 3 obtained higher reading and learning outcome scores than their peers in the unstructured groups.
Resumo:
MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG: start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coil extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coil. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens. (C) 1999 Academic Press.
Resumo:
Four different promoters (35S and enhanced 35S of the cauliflower mosaic virus, polyubiquitin of maize and actin1 of rice) were compared in a transient assay using maize leaves and particle bombardment. A gene encoding the jellyfish green fluorescent protein (GFP) driven by the 358 promoter was used as an internal standard to monitor the effectiveness of each bombardment. Normalisation of the transient expression assay using the GFP reference significantly reduced the variability between separate bombardments and allowed for a rapid and accurate evaluation of different promoters in microprojectile-bombarded leaves.
Resumo:
Soluble organic nitrogen, including protein and amino acids, was found to be a ubiquitous form of soil N in diverse Australian environments. Fine roots of species representative of these environments were found to be active in the metabolism of glycine. The ability to incorporate [N-15]glycine was widespread among plant species from subantarctic to tropical communities. In species from subantarctic herbfield, subtropical coral cay, subtropical rainforest and wet heathland, [N-15]glycine incorporation ranged from 26 to 45% of (NH4+)-N-15 incorporation and was 2- to 3-fold greater than (NO3-)-N-15 incorporation. Most semiarid mulga and tropical savanna woodland species incorporated [N-15]glycine and (NO3-)-N-15 in similar amounts, 18-26% of (NH4+)-N-15 incorporation. We conclude that the potential to utilise amino acids as N sources is of widespread occurrence in plant communities and is not restricted to those from low temperature regimes or where N mineralisation is limited. Seedlings of Hakea (Proteaceae) were shown to metabolise glycine, with a rapid transfer of N-15 from glycine to serine and other amino compounds. The ability to take up and metabolise glycine was unaffected by the presence of equimolar concentrations of NO3- and NH4+. Isonicotinic acid hydrazide (INH) did not inhibit the transfer of N-15-label from glycine to serine indicating that serine hydroxymethyltransferase was not active in glycine catabolism. In contrast aminooxyacetate (AOA) strongly inhibited transfer of N-15 from glycine to serine and labelling of other amino compounds, suggesting that glycine is metabolised in roots and cluster roots of Hakea via an aminotransferase.